ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Optimization Algorithms via Sum-of-Squares

77   0   0.0 ( 0 )
 نشر من قبل Vincent Tan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new framework for unifying and systematizing the performance analysis of first-order black-box optimization algorithms for unconstrained convex minimization. The low-cost iteration complexity enjoyed by first-order algorithms renders them particularly relevant for applications in machine learning and large-scale data analysis. Relying on sum-of-squares (SOS) optimization, we introduce a hierarchy of semidefinite programs that give increasingly better convergence bounds for higher levels of the hierarchy. Alluding to the power of the SOS hierarchy, we show that the (dual of the) first level corresponds to the Performance Estimation Problem (PEP) introduced by Drori and Teboulle [Math. Program., 145(1):451--482, 2014], a powerful framework for determining convergence rates of first-order optimization algorithms. Consequently, many results obtained within the PEP framework can be reinterpreted as degree-1 SOS proofs, and thus, the SOS framework provides a promising new approach for certifying improved rates of convergence by means of higher-order SOS certificates. To determine analytical rate bounds, in this work we use the first level of the SOS hierarchy and derive new result{s} for noisy gradient descent with inexact line search methods (Armijo, Wolfe, and Goldstein).



قيم البحث

اقرأ أيضاً

SOSTOOLS v3.00 is the latest release of the freely available MATLAB toolbox for formulating and solving sum of squares (SOS) optimization problems. Such problems arise naturally in the analysis and control of nonlinear dynamical systems, but also in other areas such as combinatorial optimization. Highlights of the new release include the ability to create polynomial matrices and formulate polynomial matrix inequalities, compatibility with MuPAD, the new MATLAB symbolic engine, as well as the multipoly toolbox v2.01. SOSTOOLS v3.00 can interface with five semidefinite programming solvers, and includes ten demonstration examples.
Semidefinite programs (SDPs) are standard convex problems that are frequently found in control and optimization applications. Interior-point methods can solve SDPs in polynomial time up to arbitrary accuracy, but scale poorly as the size of matrix va riables and the number of constraints increases. To improve scalability, SDPs can be approximated with lower and upper bounds through the use of structured subsets (e.g., diagonally-dominant and scaled-diagonally dominant matrices). Meanwhile, any underlying sparsity or symmetry structure may be leveraged to form an equivalent SDP with smaller positive semidefinite constraints. In this paper, we present a notion of decomposed structured subsets}to approximate an SDP with structured subsets after an equivalent conversion. The lower/upper bounds found by approximation after conversion become tighter than the bounds obtained by approximating the original SDP directly. We apply decomposed structured subsets to semidefinite and sum-of-squares optimization problems with examples of H-infinity norm estimation and constrained polynomial optimization. An existing basis pursuit method is adapted into this framework to iteratively refine bounds.
We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers. The guarantees of our algorithms improve in many cases significantly over the best previous ones, obtained in recent w orks of Diakonikolas et al, Lai et al, and Charikar et al. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. Our algorithms are based on a standard sum-of-squares relaxation of the following conceptually-simple optimization problem: Among all distributions whose moments are bounded in the same way as for the unknown distribution, find the one that is closest in statistical distance to the empirical distribution of the adversarially-corrupted sample.
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a unit vector, and $A$ is a random noise tensor, the goal is to recover the planted vector $v_0$. For the case that $A$ has iid standard Gaussian entries, we give an efficient algorithm to recover $v_0$ whenever $tau geq omega(n^{3/4} log(n)^{1/4})$, and certify that the recovered vector is close to a maximum likelihood estimator, all with high probability over the random choice of $A$. The previous best algorithms with provable guarantees required $tau geq Omega(n)$. In the regime $tau leq o(n)$, natural tensor-unfolding-based spectral relaxations for the underlying optimization problem break down (in the sense that their integrality gap is large). To go beyond this barrier, we use convex relaxations based on the sum-of-squares method. Our recovery algorithm proceeds by rounding a degree-$4$ sum-of-squares relaxations of the maximum-likelihood-estimation problem for the statistical model. To complement our algorithmic results, we show that degree-$4$ sum-of-squares relaxations break down for $tau leq O(n^{3/4}/log(n)^{1/4})$, which demonstrates that improving our current guarantees (by more than logarithmic factors) would require new techniques or might even be intractable. Finally, we show how to exploit additional problem structure in order to solve our sum-of-squares relaxations, up to some approximation, very efficiently. Our fastest algorithm runs in nearly-linear time using shifted (matrix) power iteration and has similar guarantees as above. The analysis of this algorithm also confirms a variant of a conjecture of Montanari and Richard about singular vectors of tensor unfoldings.
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th is paper, we introduce a new notion of emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا