ﻻ يوجد ملخص باللغة العربية
Since the recent introduction of several viable vaccines for SARS-CoV-2, vaccination uptake has become the key factor that will determine our success in containing the COVID-19 pandemic. We argue that game theory and social network models should be used to guide decisions pertaining to vaccination programmes for the best possible results. In the months following the introduction of vaccines, their availability and the human resources needed to run the vaccination programmes have been scarce in many countries. Vaccine hesitancy is also being encountered from some sections of the general public. We emphasize that decision-making under uncertainty and imperfect information, and with only conditionally optimal outcomes, is a unique forte of established game-theoretic modelling. Therefore, we can use this approach to obtain the best framework for modelling and simulating vaccination prioritization and uptake that will be readily available to inform important policy decisions for the optimal control of the COVID-19 pandemic.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju
We analyze risk factors correlated with the initial transmission growth rate of the recent COVID-19 pandemic in different countries. The number of cases follows in its early stages an almost exponential expansion; we chose as a starting point in each
This research was done during the DOMath program at Duke University from May 18 to July 10, 2020. At the time, Duke and other universities across the country were wrestling with the question of how to safely welcome students back to campus in the Fal
Population-wide vaccination is critical for containing the SARS-CoV-2 (Covid-19) pandemic when combined with restrictive and prevention measures. In this study, we introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution
The exposure and consumption of information during epidemic outbreaks may alter risk perception, trigger behavioural changes, and ultimately affect the evolution of the disease. It is thus of the uttermost importance to map information dissemination