ترغب بنشر مسار تعليمي؟ اضغط هنا

Astro2020 Science White Paper: Using X-Ray Polarimetry to Probe the Physics of Black Holes and Neutron Stars

123   0   0.0 ( 0 )
 نشر من قبل Henric Krawczynski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper highlights compact object and fundamental physics science opportunities afforded by high-throughput broadband (0.1-60 keV) X-ray polarization observations. X-ray polarimetry gives new observables with geometric information about stellar remnants which are many orders of magnitude too small for direct imaging. The X-ray polarimetric data also reveal details about the emission mechanisms and the structure of the magnetic fields in and around the most extreme objects in the Universe. Whereas the Imaging X-ray Polarimetry Explorer (IXPE) to be launched in 2021 will obtain first results for bright objects, a follow-up mission could be one order of magnitude more sensitive and would be able to use a broader bandpass to perform physics type experiments for representative samples of sources.

قيم البحث

اقرأ أيضاً

Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the pr esent time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
Supermassive black holes are located at the center of most, if not all, massive galaxies. They follow close correlations with global properties of their host galaxies (scaling relations), and are thought to play a crucial role in galaxy evolution. Ye t, we lack a complete understanding of fundamental aspects of their growth across cosmic time. In particular, we still do not understand: (1) whether black holes or their host galaxies grow faster and (2) what is the maximum mass that black holes can reach. The high angular resolution capability and sensitivity of 30-m class telescopes will revolutionize our understanding of the extreme end of the black hole and galaxy mass scale. With such facilities, we will be able to dynamically measure masses of the largest black holes and characterize galaxy properties out to redshift $z sim 1.5$. Together with the evolution of black hole-galaxy scaling relations since $z sim 1.5$, the maximum mass black hole will shed light on the main channels of black hole growth.
This is a white paper submitted in response to the call from the Astro2020 Decadal Survey Committee. We outline the scientific progress that will be made in the next few decades in the study of supernova remnants in the X-ray band, using observatories like Athena, Lynx, and AXIS.
Coalescing, massive black-hole (MBH) binaries are the most powerful sources of gravitational waves (GWs) in the Universe, which makes MBH science a prime focus for ongoing and upcoming GW observatories. The Laser Interferometer Space Antenna (LISA) - - a gigameter scale space-based GW observatory -- will grant us access to an immense cosmological volume, revealing MBHs merging when the first cosmic structures assembled in the Dark Ages. LISA will unveil the yet unknown origin of the first quasars, and detect the teeming population of MBHs of $10^4 - 10^7$ solar masses. forming within protogalactic halos. The Pulsar Timing Array, a galactic-scale GW survey, can access the largest MBHs the Universe, detecting the cosmic GW foreground from inspiraling MBH binaries of about 10^9 solar masses. LISA can measure MBH spins and masses with precision far exceeding that from electromagnetic (EM) probes, and together, both GW observatories will provide the first full census of binary MBHs, and their orbital dynamics, across cosmic time. Detecting the loud gravitational signal of these MBH binaries will also trigger alerts for EM counterpart searches, from decades (PTAs) to hours (LISA) prior to the final merger. By witnessing both the GW and EM signals of MBH mergers, precious information will be gathered about the rich and complex environment in the aftermath of a galaxy collision. The unique GW characterization of MBHs will shed light on the deep link between MBHs of $10^4-10^{10}$ solar masses and the grand design of galaxy assembly, as well as on the complex dynamics that drive MBHs to coalescence.
This paper outlines the importance of understanding jets from compact binaries for the problem of understanding the broader phenomenology of jet production. Because X-ray binaries are nearby and bright, have well-measured system parameters, and vary by factors of $sim 10^6$ on $sim$ year timescales, they provide a unique opportunity to understand how various aspects of the jet physics change in response to changes in the accretion flow, giving the possibility of looking for trends within individual systems and testing their universality with other systems, rather than trying to interpret large samples of objects on a statistical basis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا