ﻻ يوجد ملخص باللغة العربية
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple dark matter models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the dark matter annihilation cross section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding $600%$, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
We calculate the probability distribution function (PDF) of the expected annihilation luminosities of dark matter subhalos as a function of subhalo mass and distance from the Galactic center using a semi-analytical model of halo evolution. We find th
Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgos first gravitational-wave catalog, GWTC-1, we investigate whether the power-law
Reticulum II (Ret II) is a satellite galaxy of the Milky Way and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain $
Since the seminal work of Penrose (1969) and Blandford & Znajek (1977), it has been realized that black hole spin may be an important energy source in astrophysics. The radio-loud/radio-quiet dichotomy in the AGN population is usually attributed to d
We consider the observational properties of a static black hole space-time immersed in a dark matter envelope. We thus investigate how the modifications to geometry, induced by the presence of dark matter affect the luminosity of the black holes accr