ترغب بنشر مسار تعليمي؟ اضغط هنا

Certifying clusters from sum-of-norms clustering

77   0   0.0 ( 0 )
 نشر من قبل Tao Jiang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sum-of-norms clustering is a clustering formulation based on convex optimization that automatically induces hierarchy. Multiple algorithms have been proposed to solve the optimization problem: subgradient descent by Hocking et al., ADMM and ADA by Chi and Lange, stochastic incremental algorithm by Panahi et al. and semismooth Newton-CG augmented Lagrangian method by Sun et al. All algorithms yield approximate solutions, even though an exact solution is demanded to determine the correct cluster assignment. The purpose of this paper is to close the gap between the output from existing algorithms and the exact solution to the optimization problem. We present a clustering test that identifies and certifies the correct cluster assignment from an approximate solution yielded by any primal-dual algorithm. Our certification validates clustering for both unit and multiplicative weights. The test may not succeed if the approximation is inaccurate. However, we show the correct cluster assignment is guaranteed to be certified by a primal-dual path following algorithm after sufficiently many iterations, provided that the model parameter $lambda$ avoids a finite number of bad values. Numerical experiments are conducted on Gaussian mixture and half-moon data, which indicate that carefully chosen multiplicative weights increase the recovery power of sum-of-norms clustering.

قيم البحث

اقرأ أيضاً

We develop a new family of convex relaxations for $k$-means clustering based on sum-of-squares norms, a relaxation of the injective tensor norm that is efficiently computable using the Sum-of-Squares algorithm. We give an algorithm based on this rela xation that recovers a faithful approximation to the true means in the given data whenever the low-degree moments of the points in each cluster have bounded sum-of-squares norms. We then prove a sharp upper bound on the sum-of-squares norms for moment tensors of any distribution that satisfies the emph{Poincare inequality}. The Poincare inequality is a central inequality in probability theory, and a large class of distributions satisfy it including Gaussians, product distributions, strongly log-concave distributions, and any sum or uniformly continuous transformation of such distributions. As an immediate corollary, for any $gamma > 0$, we obtain an efficient algorithm for learning the means of a mixture of $k$ arbitrary Poincare distributions in $mathbb{R}^d$ in time $d^{O(1/gamma)}$ so long as the means have separation $Omega(k^{gamma})$. This in particular yields an algorithm for learning Gaussian mixtures with separation $Omega(k^{gamma})$, thus partially resolving an open problem of Regev and Vijayaraghavan citet{regev2017learning}. Our algorithm works even in the outlier-robust setting where an $epsilon$ fraction of arbitrary outliers are added to the data, as long as the fraction of outliers is smaller than the smallest cluster. We, therefore, obtain results in the strong agnostic setting where, in addition to not knowing the distribution family, the data itself may be arbitrarily corrupted.
Abstracting neural networks with constraints they impose on their inputs and outputs can be very useful in the analysis of neural network classifiers and to derive optimization-based algorithms for certification of stability and robustness of feedbac k systems involving neural networks. In this paper, we propose a convex program, in the form of a Linear Matrix Inequality (LMI), to certify incremental quadratic constraints on the map of neural networks over a region of interest. These certificates can capture several useful properties such as (local) Lipschitz continuity, one-sided Lipschitz continuity, invertibility, and contraction. We illustrate the utility of our approach in two different settings. First, we develop a semidefinite program to compute guaranteed and sharp upper bounds on the local Lipschitz constant of neural networks and illustrate the results on random networks as well as networks trained on MNIST. Second, we consider a linear time-invariant system in feedback with an approximate model predictive controller parameterized by a neural network. We then turn the stability analysis into a semidefinite feasibility program and estimate an ellipsoidal invariant set for the closed-loop system.
Reducing the variance of the gradient estimator is known to improve the convergence rate of stochastic gradient-based optimization and sampling algorithms. One way of achieving variance reduction is to design importance sampling strategies. Recently, the problem of designing such schemes was formulated as an online learning problem with bandit feedback, and algorithms with sub-linear static regret were designed. In this work, we build on this framework and propose Avare, a simple and efficient algorithm for adaptive importance sampling for finite-sum optimization and sampling with decreasing step-sizes. Under standard technical conditions, we show that Avare achieves $mathcal{O}(T^{2/3})$ and $mathcal{O}(T^{5/6})$ dynamic regret for SGD and SGLD respectively when run with $mathcal{O}(1/t)$ step sizes. We achieve this dynamic regret bound by leveraging our knowledge of the dynamics defined by the algorithm, and combining ideas from online learning and variance-reduced stochastic optimization. We validate empirically the performance of our algorithm and identify settings in which it leads to significant improvements.
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method~(Fountoulakis et. al.) for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method. From a computational perspective, we show that the solution path of l1-regularized PageRank is monotonic. This allows for the application of the forward stagewise algorithm, which approximates the solution path in running time that does not depend on the size of the whole graph. Finally, we show that l1-regularized PageRank and approximate personalized PageRank (APPR), another very popular method for local graph clustering, are equivalent in the sense that we can lower and upper bound the output of one with the output of the other. Based on this relation, we establish for APPR similar results to those we establish for l1-regularized PageRank.
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t hese issues in the simpler setting of linear regression (including both underparameterized and overparameterized regimes), where our goal is to make sharp instance-based comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression. For a broad class of least squares problem instances (that are natural in high-dimensional settings), we show: (1) for every problem instance and for every ridge parameter, (unregularized) SGD, when provided with logarithmically more samples than that provided to the ridge algorithm, generalizes no worse than the ridge solution (provided SGD uses a tuned constant stepsize); (2) conversely, there exist instances (in this wide problem class) where optimally-tuned ridge regression requires quadratically more samples than SGD in order to have the same generalization performance. Taken together, our results show that, up to the logarithmic factors, the generalization performance of SGD is always no worse than that of ridge regression in a wide range of overparameterized problems, and, in fact, could be much better for some problem instances. More generally, our results show how algorithmic regularization has important consequences even in simpler (overparameterized) convex settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا