ﻻ يوجد ملخص باللغة العربية
Sum-of-norms clustering is a clustering formulation based on convex optimization that automatically induces hierarchy. Multiple algorithms have been proposed to solve the optimization problem: subgradient descent by Hocking et al., ADMM and ADA by Chi and Lange, stochastic incremental algorithm by Panahi et al. and semismooth Newton-CG augmented Lagrangian method by Sun et al. All algorithms yield approximate solutions, even though an exact solution is demanded to determine the correct cluster assignment. The purpose of this paper is to close the gap between the output from existing algorithms and the exact solution to the optimization problem. We present a clustering test that identifies and certifies the correct cluster assignment from an approximate solution yielded by any primal-dual algorithm. Our certification validates clustering for both unit and multiplicative weights. The test may not succeed if the approximation is inaccurate. However, we show the correct cluster assignment is guaranteed to be certified by a primal-dual path following algorithm after sufficiently many iterations, provided that the model parameter $lambda$ avoids a finite number of bad values. Numerical experiments are conducted on Gaussian mixture and half-moon data, which indicate that carefully chosen multiplicative weights increase the recovery power of sum-of-norms clustering.
We develop a new family of convex relaxations for $k$-means clustering based on sum-of-squares norms, a relaxation of the injective tensor norm that is efficiently computable using the Sum-of-Squares algorithm. We give an algorithm based on this rela
Abstracting neural networks with constraints they impose on their inputs and outputs can be very useful in the analysis of neural network classifiers and to derive optimization-based algorithms for certification of stability and robustness of feedbac
Reducing the variance of the gradient estimator is known to improve the convergence rate of stochastic gradient-based optimization and sampling algorithms. One way of achieving variance reduction is to design importance sampling strategies. Recently,
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t