ﻻ يوجد ملخص باللغة العربية
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method~(Fountoulakis et. al.) for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method. From a computational perspective, we show that the solution path of l1-regularized PageRank is monotonic. This allows for the application of the forward stagewise algorithm, which approximates the solution path in running time that does not depend on the size of the whole graph. Finally, we show that l1-regularized PageRank and approximate personalized PageRank (APPR), another very popular method for local graph clustering, are equivalent in the sense that we can lower and upper bound the output of one with the output of the other. Based on this relation, we establish for APPR similar results to those we establish for l1-regularized PageRank.
We provide statistical learning guarantees for two unsupervised learning tasks in the context of compressive statistical learning, a general framework for resource-efficient large-scale learning that we introduced in a companion paper.The principle o
Local graph clustering and the closely related seed set expansion problem are primitives on graphs that are central to a wide range of analytic and learning tasks such as local clustering, community detection, nodes ranking and feature inference. Pri
In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination. Existing optimization-based algorithms s
We introduce a probabilistic robustness measure for Bayesian Neural Networks (BNNs), defined as the probability that, given a test point, there exists a point within a bounded set such that the BNN prediction differs between the two. Such a measure c
Generative Adversarial Networks (GANs) have achieved great success in unsupervised learning. Despite the remarkable empirical performance, there are limited theoretical understandings on the statistical properties of GANs. This paper provides statist