ترغب بنشر مسار تعليمي؟ اضغط هنا

COVID-ABS: An Agent-Based Model of COVID-19 Epidemic to Simulate Health and Economic Effects of Social Distancing Interventions

67   0   0.0 ( 0 )
 نشر من قبل Petr\\^onio Silva C. L.
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The COVID-19 pandemic due to the SARS-CoV-2 coronavirus has directly impacted the public health and economy worldwide. To overcome this problem, countries have adopted different policies and non-pharmaceutical interventions for controlling the spread of the virus. This paper proposes the COVID-ABS, a new SEIR (Susceptible-Exposed-Infected-Recovered) agent-based model that aims to simulate the pandemic dynamics using a society of agents emulating people, business and government. Seven different scenarios of social distancing interventions were analyzed, with varying epidemiological and economic effects: (1) do nothing, (2) lockdown, (3) conditional lockdown, (4) vertical isolation, (5) partial isolation, (6) use of face masks, and (7) use of face masks together with 50% of adhesion to social isolation. In the impossibility of implementing scenarios with lockdown, which present the lowest number of deaths and highest impact on the economy, scenarios combining the use of face masks and partial isolation can be the more realistic for implementation in terms of social cooperation. The COVID-ABS model was implemented in Python programming language, with source code publicly available. The model can be easily extended to other societies by changing the input parameters, as well as allowing the creation of a multitude of other scenarios. Therefore, it is a useful tool to assist politicians and health authorities to plan their actions against the COVID-19 epidemic.



قيم البحث

اقرأ أيضاً

Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should th e measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.
During the global spread of COVID-19, Japan has been among the top countries to maintain a relatively low number of infections, despite implementing limited institutional interventions. Using a Tokyo Metropolitan dataset, this study investigated how these limited intervention policies have affected public health and economic conditions in the COVID-19 context. A causal loop analysis suggested that there were risks to prematurely terminating such interventions. On the basis of this result and subsequent quantitative modelling, we found that the short-term effectiveness of a short-term pre-emptive stay-at-home request caused a resurgence in the number of positive cases, whereas an additional request provided a limited negative add-on effect for economic measures (e.g. the number of electronic word-of-mouth (eWOM) communications and restaurant visits). These findings suggest the superiority of a mild and continuous intervention as a long-term countermeasure under epidemic pressures when compared to strong intermittent interventions.
In response to the coronavirus disease 2019 (COVID-19) pandemic, governments have encouraged and ordered citizens to practice social distancing, particularly by working and studying at home. Intuitively, only a subset of people have the ability to pr actice remote work. However, there has been little research on the disparity of mobility adaptation across different income groups in US cities during the pandemic. The authors worked to fill this gap by quantifying the impacts of the pandemic on human mobility by income in Greater Houston, Texas. In this paper, we determined human mobility using pseudonymized, spatially disaggregated cell phone location data. A longitudinal study across estimated income groups was conducted by measuring the total travel distance, radius of gyration, number of visited locations, and per-trip distance in April 2020 compared to the data in a baseline. An apparent disparity in mobility was found across estimated income groups. In particular, there was a strong negative correlation ($rho$ = -0.90) between a travelers estimated income and travel distance in April. Disparities in mobility adaptability were further shown since those in higher income brackets experienced larger percentage drops in the radius of gyration and the number of distinct visited locations than did those in lower income brackets. The findings of this study suggest a need to understand the reasons behind the mobility inflexibility among low-income populations during the pandemic. The study illuminates an equity issue which may be of interest to policy makers and researchers alike in the wake of an epidemic.
The outbreak of the novel coronavirus, COVID-19, has been declared a pandemic by the WHO. The structures of social contact critically determine the spread of the infection and, in the absence of vaccines, the control of these structures through large -scale social distancing measures appears to be the most effective means of mitigation. Here we use an age-structured SIR model with social contact matrices obtained from surveys and Bayesian imputation to study the progress of the COVID-19 epidemic in India. The basic reproductive ratio R0 and its time-dependent generalization are computed based on case data, age distribution and social contact structure. The impact of social distancing measures - workplace non-attendance, school closure, lockdown - and their efficacy with durations are then investigated. A three-week lockdown is found insufficient to prevent a resurgence and, instead, protocols of sustained lockdown with periodic relaxation are suggested. Forecasts are provided for the reduction in age-structured morbidity and mortality as a result of these measures. Our study underlines the importance of age and social contact structures in assessing the country-specific impact of mitigatory social distancing.
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters of the COVID-19 transmission network for time periods before, during, and after the application of strict NPIs for the first wave of COVID-19 infections in Germany combining Bayesian parameter inference with an agent-based epidemiological model. We assume a Watts-Strogatz small-world network which allows to distinguish contacts within clustered cliques and unclustered, random contacts in the population, which have been shown to be crucial in sustaining the epidemic. In contrast to other works, which use coarse-grained network structures from anonymized data, like cell phone data, we consider the contacts of individual agents explicitly. We show that NPIs drastically reduced random contacts in the transmission network, increased network clustering, and resulted in a change from an exponential to a constant regime of newcases. In this regime, the disease spreads like a wave with a finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict by mean field theory. Our analysis indicates that besides the well-known transitionbetween exponential increase and exponential decrease in the number of new cases, NPIs can induce a transition to another, previously unappreciated regime of constant new cases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا