ﻻ يوجد ملخص باللغة العربية
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters of the COVID-19 transmission network for time periods before, during, and after the application of strict NPIs for the first wave of COVID-19 infections in Germany combining Bayesian parameter inference with an agent-based epidemiological model. We assume a Watts-Strogatz small-world network which allows to distinguish contacts within clustered cliques and unclustered, random contacts in the population, which have been shown to be crucial in sustaining the epidemic. In contrast to other works, which use coarse-grained network structures from anonymized data, like cell phone data, we consider the contacts of individual agents explicitly. We show that NPIs drastically reduced random contacts in the transmission network, increased network clustering, and resulted in a change from an exponential to a constant regime of newcases. In this regime, the disease spreads like a wave with a finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict by mean field theory. Our analysis indicates that besides the well-known transitionbetween exponential increase and exponential decrease in the number of new cases, NPIs can induce a transition to another, previously unappreciated regime of constant new cases.
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa
We analyze risk factors correlated with the initial transmission growth rate of the recent COVID-19 pandemic in different countries. The number of cases follows in its early stages an almost exponential expansion; we chose as a starting point in each
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable ti
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact
With the unfolding of the COVID-19 pandemic, mathematical modeling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long term predictions