ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Explanations with Differential Privacy

73   0   0.0 ( 0 )
 نشر من قبل Neel Patel
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation data used to generate them, thus undermining data privacy. To address this issue, we propose differentially private algorithms to construct feature-based model explanations. We design an adaptive differentially private gradient descent algorithm, that finds the minimal privacy budget required to produce accurate explanations. It reduces the overall privacy loss on explanation data, by adaptively reusing past differentially private explanations. It also amplifies the privacy guarantees with respect to the training data. We evaluate the implications of differentially private models and our privacy mechanisms on the quality of model explanations.

قيم البحث

اقرأ أيضاً

Privacy and transparency are two key foundations of trustworthy machine learning. Model explanations offer insights into a models decisions on input data, whereas privacy is primarily concerned with protecting information about the training data. We analyze connections between model explanations and the leakage of sensitive information about the models training set. We investigate the privacy risks of feature-based model explanations using membership inference attacks: quantifying how much model predictions plus their explanations leak information about the presence of a datapoint in the training set of a model. We extensively evaluate membership inference attacks based on feature-based model explanations, over a variety of datasets. We show that backpropagation-based explanations can leak a significant amount of information about individual training datapoints. This is because they reveal statistical information about the decision boundaries of the model about an input, which can reveal its membership. We also empirically investigate the trade-off between privacy and explanation quality, by studying the perturbation-based model explanations.
104 - Zhiqi Bu , Hua Wang , Qi Long 2021
In deep learning with differential privacy (DP), the neural network achieves the privacy usually at the cost of slower convergence (and thus lower performance) than its non-private counterpart. This work gives the first convergence analysis of the DP deep learning, through the lens of training dynamics and the neural tangent kernel (NTK). Our convergence theory successfully characterizes the effects of two key components in the DP training: the per-sample clipping (flat or layerwise) and the noise addition. Our analysis not only initiates a general principled framework to understand the DP deep learning with any network architecture and loss function, but also motivates a new clipping method -- the global clipping, that significantly improves the convergence while preserving the same privacy guarantee as the existing local clipping. In terms of theoretical results, we establish the precise connection between the per-sample clipping and NTK matrix. We show that in the gradient flow, i.e., with infinitesimal learning rate, the noise level of DP optimizers does not affect the convergence. We prove that DP gradient descent (GD) with global clipping guarantees the monotone convergence to zero loss, which can be violated by the existing DP-GD with local clipping. Notably, our analysis framework easily extends to other optimizers, e.g., DP-Adam. Empirically speaking, DP optimizers equipped with global clipping perform strongly on a wide range of classification and regression tasks. In particular, our global clipping is surprisingly effective at learning calibrated classifiers, in contrast to the existing DP classifiers which are oftentimes over-confident and unreliable. Implementation-wise, the new clipping can be realized by adding one line of code into the Opacus library.
The collection and sharing of individuals data has become commonplace in many industries. Local differential privacy (LDP) is a rigorous approach to preserving data privacy even from a database administrator, unlike the more standard central differen tial privacy. To achieve LDP, one traditionally adds noise directly to each data dimension, but for high-dimensional data the level of noise required for sufficient anonymization all but entirely destroys the datas utility. In this paper, we introduce a novel LDP mechanism that leverages representation learning to overcome the prohibitive noise requirements of direct methods. We demonstrate that, rather than simply estimating aggregate statistics of the privatized data as is the norm in LDP applications, our method enables the training of performant machine learning models. Unique applications of our approach include private novel-class classification and the augmentation of clean datasets with additional privatized features. Methods that rely on central differential privacy are not applicable to such tasks. Our approach achieves significant performance gains on these tasks relative to state-of-the-art LDP benchmarks that noise data directly.
124 - Ao Liu , Xiaoyu Chen , Sijia Liu 2021
Motivated by the recent discovery that the interpretation maps of CNNs could easily be manipulated by adversarial attacks against network interpretability, we study the problem of interpretation robustness from a new perspective of Renyi differential privacy (RDP). The advantages of our Renyi-Robust-Smooth (RDP-based interpretation method) are three-folds. First, it can offer provable and certifiable top-$k$ robustness. That is, the top-$k$ important attributions of the interpretation map are provably robust under any input perturbation with bounded $ell_d$-norm (for any $dgeq 1$, including $d = infty$). Second, our proposed method offers $sim10%$ better experimental robustness than existing approaches in terms of the top-$k$ attributions. Remarkably, the accuracy of Renyi-Robust-Smooth also outperforms existing approaches. Third, our method can provide a smooth tradeoff between robustness and computational efficiency. Experimentally, its top-$k$ attributions are {em twice} more robust than existing approaches when the computational resources are highly constrained.
Complex black-box machine learning models are regularly used in critical decision-making domains. This has given rise to several calls for algorithmic explainability. Many explanation algorithms proposed in literature assign importance to each featur e individually. However, such explanations fail to capture the joint effects of sets of features. Indeed, few works so far formally analyze high-dimensional model explanations. In this paper, we propose a novel high dimension model explanation method that captures the joint effect of feature subsets. We propose a new axiomatization for a generalization of the Banzhaf index; our method can also be thought of as an approximation of a black-box model by a higher-order polynomial. In other words, this work justifies the use of the generalized Banzhaf index as a model explanation by showing that it uniquely satisfies a set of natural desiderata and that it is the optimal local approximation of a black-box model. Our empirical evaluation of our measure highlights how it manages to capture desirable behavior, whereas other measures that do not satisfy our axioms behave in an unpredictable manner.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا