ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discovery that the interpretation maps of CNNs could easily be manipulated by adversarial attacks against network interpretability, we study the problem of interpretation robustness from a new perspective of Renyi differential privacy (RDP). The advantages of our Renyi-Robust-Smooth (RDP-based interpretation method) are three-folds. First, it can offer provable and certifiable top-$k$ robustness. That is, the top-$k$ important attributions of the interpretation map are provably robust under any input perturbation with bounded $ell_d$-norm (for any $dgeq 1$, including $d = infty$). Second, our proposed method offers $sim10%$ better experimental robustness than existing approaches in terms of the top-$k$ attributions. Remarkably, the accuracy of Renyi-Robust-Smooth also outperforms existing approaches. Third, our method can provide a smooth tradeoff between robustness and computational efficiency. Experimentally, its top-$k$ attributions are {em twice} more robust than existing approaches when the computational resources are highly constrained.
Federated learning is an emerging data-private distributed learning framework, which, however, is vulnerable to adversarial attacks. Although several heuristic defenses are proposed to enhance the robustness of federated learning, they do not provide
Outlier detection and novelty detection are two important topics for anomaly detection. Suppose the majority of a dataset are drawn from a certain distribution, outlier detection and novelty detection both aim to detect data samples that do not fit t
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection. Without directly interactive with training examples, the generative model can
A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary. We establish a connection between adversarial robustness of streaming algori
Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation d