ترغب بنشر مسار تعليمي؟ اضغط هنا

Certifiably Robust Interpretation via Renyi Differential Privacy

125   0   0.0 ( 0 )
 نشر من قبل Ao Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the recent discovery that the interpretation maps of CNNs could easily be manipulated by adversarial attacks against network interpretability, we study the problem of interpretation robustness from a new perspective of Renyi differential privacy (RDP). The advantages of our Renyi-Robust-Smooth (RDP-based interpretation method) are three-folds. First, it can offer provable and certifiable top-$k$ robustness. That is, the top-$k$ important attributions of the interpretation map are provably robust under any input perturbation with bounded $ell_d$-norm (for any $dgeq 1$, including $d = infty$). Second, our proposed method offers $sim10%$ better experimental robustness than existing approaches in terms of the top-$k$ attributions. Remarkably, the accuracy of Renyi-Robust-Smooth also outperforms existing approaches. Third, our method can provide a smooth tradeoff between robustness and computational efficiency. Experimentally, its top-$k$ attributions are {em twice} more robust than existing approaches when the computational resources are highly constrained.



قيم البحث

اقرأ أيضاً

Federated learning is an emerging data-private distributed learning framework, which, however, is vulnerable to adversarial attacks. Although several heuristic defenses are proposed to enhance the robustness of federated learning, they do not provide certifiable robustness guarantees. In this paper, we incorporate randomized smoothing techniques into federated adversarial training to enable data-private distributed learning with certifiable robustness to test-time adversarial perturbations. Our experiments show that such an advanced federated adversarial learning framework can deliver models as robust as those trained by the centralized training. Further, this enables provably-robust classifiers to $ell_2$-bounded adversarial perturbations in a distributed setup. We also show that one-point gradient estimation based training approach is $2-3times$ faster than popular stochastic estimator based approach without any noticeable certified robustness differences.
125 - Min Du , Ruoxi Jia , Dawn Song 2019
Outlier detection and novelty detection are two important topics for anomaly detection. Suppose the majority of a dataset are drawn from a certain distribution, outlier detection and novelty detection both aim to detect data samples that do not fit t he distribution. Outliers refer to data samples within this dataset, while novelties refer to new samples. In the meantime, backdoor poisoning attacks for machine learning models are achieved through injecting poisoning samples into the training dataset, which could be regarded as outliers that are intentionally added by attackers. Differential privacy has been proposed to avoid leaking any individuals information, when aggregated analysis is performed on a given dataset. It is typically achieved by adding random noise, either directly to the input dataset, or to intermediate results of the aggregation mechanism. In this paper, we demonstrate that applying differential privacy can improve the utility of outlier detection and novelty detection, with an extension to detect poisoning samples in backdoor attacks. We first present a theoretical analysis on how differential privacy helps with the detection, and then conduct extensive experiments to validate the effectiveness of differential privacy in improving outlier detection, novelty detection, and backdoor attack detection.
261 - Chuan Ma , Jun Li , Ming Ding 2020
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection. Without directly interactive with training examples, the generative model can be fully used to estimate the underlying distribution of an original dataset while the discriminative model can examine the quality of the generated samples by comparing the label values with the training examples. However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals sensitive and private information. To mitigate this information leakage and construct a private GAN, in this work we propose a Renyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training. Moreover, we derive the analytical results of the total privacy loss under the subsampling method and cumulated iterations, which show its effectiveness on the privacy budget allocation. In addition, in order to mitigate the negative impact brought by the injecting noise, we enhance the proposed algorithm by adding an adaptive noise tuning step, which will change the volume of added noise according to the testing accuracy. Through extensive experimental results, we verify that the proposed algorithm can achieve a better privacy level while producing high-quality samples compared with a benchmark DP-GAN scheme based on noise perturbation on training gradients.
A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary. We establish a connection between adversarial robustness of streaming algori thms and the notion of differential privacy. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters.
Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation d ata used to generate them, thus undermining data privacy. To address this issue, we propose differentially private algorithms to construct feature-based model explanations. We design an adaptive differentially private gradient descent algorithm, that finds the minimal privacy budget required to produce accurate explanations. It reduces the overall privacy loss on explanation data, by adaptively reusing past differentially private explanations. It also amplifies the privacy guarantees with respect to the training data. We evaluate the implications of differentially private models and our privacy mechanisms on the quality of model explanations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا