ﻻ يوجد ملخص باللغة العربية
Privacy and transparency are two key foundations of trustworthy machine learning. Model explanations offer insights into a models decisions on input data, whereas privacy is primarily concerned with protecting information about the training data. We analyze connections between model explanations and the leakage of sensitive information about the models training set. We investigate the privacy risks of feature-based model explanations using membership inference attacks: quantifying how much model predictions plus their explanations leak information about the presence of a datapoint in the training set of a model. We extensively evaluate membership inference attacks based on feature-based model explanations, over a variety of datasets. We show that backpropagation-based explanations can leak a significant amount of information about individual training datapoints. This is because they reveal statistical information about the decision boundaries of the model about an input, which can reveal its membership. We also empirically investigate the trade-off between privacy and explanation quality, by studying the perturbation-based model explanations.
Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation d
Complex black-box machine learning models are regularly used in critical decision-making domains. This has given rise to several calls for algorithmic explainability. Many explanation algorithms proposed in literature assign importance to each featur
Data is the key factor to drive the development of machine learning (ML) during the past decade. However, high-quality data, in particular labeled data, is often hard and expensive to collect. To leverage large-scale unlabeled data, self-supervised l
In deep learning with differential privacy (DP), the neural network achieves the privacy usually at the cost of slower convergence (and thus lower performance) than its non-private counterpart. This work gives the first convergence analysis of the DP
LDP (Local Differential Privacy) has recently attracted much attention as a metric of data privacy that prevents the inference of personal data from obfuscated data in the local model. However, there are scenarios in which the adversary wants to perf