ﻻ يوجد ملخص باللغة العربية
We investigate the phase diagrams of a one-dimensional lattice model of fermions and of a spin chain with interactions extending up to next-nearest neighbour range. In particular, we investigate the appearance of regions with dominant pairing physics in the presence of nearest-neighbour and next-nearest-neighbour interactions. Our analysis is based on analytical calculations in the classical limit, bosonization techniques and large-scale density-matrix renormalization group numerical simulations. The phase diagram, which is investigated in all relevant filling regimes, displays a remarkably rich collection of phases, including Luttinger liquids, phase separation, charge-density waves, bond-order phases, and exotic cluster Luttinger liquids with paired particles. In relation with recent studies, we show several emergent transition lines with a central charge $c = 3/2$ between the Luttinger-liquid and the cluster Luttinger liquid phases. These results could be experimentally investigated using highly-tunable quantum simulators.
By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg
We study analytically and with the numerical time-evolving block decimation method the dynamics of an impurity in a bath of spinless fermions with nearest-neighbor interactions in a one-dimensional lattice. The bath is in a Mott insulator state with
Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h u=gmu_B B$ line) fr
This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several application
A chiral $p_x+ip_y$ superconductor on a square lattice with nearest and next-nearest hopping and pairing terms is considered. Gap closures, as various parameters of the system are varied, are found analytically and used to identify the topological ph