ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitations and impurity dynamics in a fermionic Mott insulator with nearest-neighbor interactions

65   0   0.0 ( 0 )
 نشر من قبل Anne-Maria Visuri
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study analytically and with the numerical time-evolving block decimation method the dynamics of an impurity in a bath of spinless fermions with nearest-neighbor interactions in a one-dimensional lattice. The bath is in a Mott insulator state with alternating sites occupied and the impurity interacts with the bath by repulsive on-site interactions. We find that when the magnitudes of the on-site and nearest-neighbor interactions are close to each other, the system shows excitations of two qualitatively distinct types. For the first type, a domain wall and an anti-domain wall of density propagate in opposite directions, while the impurity stays at the initial position. For the second one, the impurity is bound to the anti-domain wall while the domain wall propagates, an excitation where the impurity and bath are closely coupled.



قيم البحث

اقرأ أيضاً

We investigate the phase diagrams of a one-dimensional lattice model of fermions and of a spin chain with interactions extending up to next-nearest neighbour range. In particular, we investigate the appearance of regions with dominant pairing physics in the presence of nearest-neighbour and next-nearest-neighbour interactions. Our analysis is based on analytical calculations in the classical limit, bosonization techniques and large-scale density-matrix renormalization group numerical simulations. The phase diagram, which is investigated in all relevant filling regimes, displays a remarkably rich collection of phases, including Luttinger liquids, phase separation, charge-density waves, bond-order phases, and exotic cluster Luttinger liquids with paired particles. In relation with recent studies, we show several emergent transition lines with a central charge $c = 3/2$ between the Luttinger-liquid and the cluster Luttinger liquid phases. These results could be experimentally investigated using highly-tunable quantum simulators.
The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolut ion offers important insights. Here we report site-resolved imaging of two-component fermionic Mott insulators, metals, and band insulators using ultracold atoms in a square lattice. For strong repulsive interactions we observe two-dimensional Mott insulators containing over 400 atoms. For intermediate interactions, we observe a coexistence of phases. From comparison to theory we find trap-averaged entropies per particle of $1.0,k_{mathrm{B}}$. In the band-insulator we find local entropies as low as $0.5,k_{mathrm{B}}$. Access to local observables will aid the understanding of fermionic many-body systems in regimes inaccessible by modern theoretical methods.
We show that a single impurity embedded in a cold atom bosonic Mott insulator leads to a novel polaron that exhibits correlated motion with an effective mass and a linear size that nearly diverge at critical value of the on-site impurity-boson intera ction strength. Cold atom technology can tune the polarons properties and break up the composite particle into a deconfined impurity-hole and boson particle state at finite, controllable polaron momentum.
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transp ort in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.
Considering a system of ultracold atoms in an optical lattice, we propose a simple and robust implementation of a quantum simulator for the homogeneous t-J model with a well-controlled fraction of holes x. The proposed experiment can provide valuable insight into the physics of cuprate superconductors. A similar scheme applied to bosons, moreover, allows one to investigate experimentally the subtle role of inhomogeneity when a system passes from one quantum phase to another.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا