ﻻ يوجد ملخص باللغة العربية
This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several applications such as the colour diversity problem and graphical games. We demonstrate ensembles of random graphs, including regular connectivity graphs, that have a periodic variation of free energy, with either the ratio of nearest to next nearest couplings, or the mean number of nearest neighbours. When the coupling ratio is integer paramagnetic phases can be found at zero temperature. This is shown to be related to the locked or unlocked nature of the interactions. For anti-ferromagnetic couplings, spin glass phases are demonstrated at low temperature. The interaction structure is formulated as a factor graph, the solution on a tree is developed. The replica symmetric and energetic one-step replica symmetry breaking solution is developed using the cavity method. We calculate within these frameworks the phase diagram and demonstrate the existence of dynamical transitions at zero temperature for cases of anti-ferromagnetic coupling on regular and inhomogeneous random graphs.
We report results of a Wang-Landau study of the random bond square Ising model with nearest- ($J_{nn}$) and next-nearest-neighbor ($J_{nnn}$) antiferromagnetic interactions. We consider the case $R=J_{nn}/J_{nnn}=1$ for which the competitive nature o
We study Ising ferrimagnets on square lattices with antiferromagnetic exchange couplings between spins of values S=1/2 and S=1 on neighbouring sites, couplings between S=1 spins at next--nearest neighbour sites of the lattice, and a single--site anis
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the