ترغب بنشر مسار تعليمي؟ اضغط هنا

$widehat{Z}$ at large $N$: from curve counts to quantum modularity

122   0   0.0 ( 0 )
 نشر من قبل Piotr Kucharski
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Reducing a 6d fivebrane theory on a 3-manifold $Y$ gives a $q$-series 3-manifold invariant $widehat{Z}(Y)$. We analyse the large-$N$ behaviour of $F_K=widehat{Z}(M_K)$, where $M_K$ is the complement of a knot $K$ in the 3-sphere, and explore the relationship between an $a$-deformed ($a=q^N$) version of $F_{K}$ and HOMFLY-PT polynomials. On the one hand, in combination with counts of holomorphic annuli on knot complements, this gives an enumerative interpretation of $F_K$ in terms of counts of open holomorphic curves. On the other, it leads to closed form expressions for $a$-deformed $F_K$ for $(2,2p+1)$-torus knots. They suggest a further $t$-deformation based on superpolynomials, which can be used to obtain a $t$-deformation of ADO polynomials, expected to be related to categorification. Moreover, studying how $F_K$ transforms under natural geometric operations on $K$ indicates relations to quantum modularity in a new setting.



قيم البحث

اقرأ أيضاً

We find and propose an explanation for a large variety of modularity-related symmetries in problems of 3-manifold topology and physics of 3d $mathcal{N}=2$ theories where such structures a priori are not manifest. These modular structures include: mo ck modular forms, $SL(2,mathbb{Z})$ Weil representations, quantum modular forms, non-semisimple modular tensor categories, and chiral algebras of logarithmic CFTs.
Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ su persymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$
111 - Shamit Kachru , Richard Nally , 2020
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad dress two natural follow-up questions, of both a physical and mathematical nature, that are surprisingly closely related. First, in passing from a complex manifold to a rational variety, as we must do to study modularity, we are implicitly choosing a rational model for the threefold; how do different choices of rational model affect our results? Second, the same modular forms are associated to elliptic curves over $mathbb{Q}$; are these elliptic curves found anywhere in the physical setup? By studying the F-theory uplift of the supersymmetric flux vacua found in the compactification of IIB string theory on (the mirror of) the Calabi-Yau hypersurface $X$ in $mathbb{P}(1,1,2,2,2)$, we find a one-parameter family of elliptic curves whose associated eigenforms exactly match those associated to $X$. Actually, we find two such families, corresponding to two different choices of rational models for the same family of Calabi-Yaus.
91 - Igor R. Klebanov 1999
This is a brief introductory review of the AdS/CFT correspondence and of the ideas that led to its formulation. Emphasis is placed on dualities between conformal large $N$ gauge theories in 4 dimensions and string backgrounds of the form $AdS_5times X_5$. Attempts to generalize this correspondence to asymptotically free theories are also included.
We prove that the moduli space of compact genus three Riemann surfaces contains only finitely many algebraically primitive Teichmueller curves. For the stratum consisting of holomorphic one-forms in genus three with a single zero, our approach to fin iteness uses the Harder-Narasimhan filtration of the Hodge bundle over a Teichmueller curve to obtain new information on the locations of the zeros of eigenforms. By passing to the boundary of moduli space, this gives explicit constraints on the cusps of Teichmueller curves in terms of cross-ratios of six points on a projective line. These constraints are akin to those that appear in Zilber and Pinks conjectures on unlikely intersections in diophantine geometry. However, in our case one is lead naturally to the intersection of a surface with a family of codimension two algebraic subgroups of $G_m^n times G_a^n$ (rather than the more standard $G_m^n$). The ambient algebraic group lies outside the scope of Zilbers Conjecture but we are nonetheless able to prove a sufficiently strong height bound. For the generic stratum in genus three, we obtain global torsion order bounds through a computer search for subtori of a codimension-two subvariety of $G_m^9$. These torsion bounds together with new bounds for the moduli of horizontal cylinders in terms of torsion orders yields finiteness in this stratum. The intermediate strata are handled with a mix of these techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا