ترغب بنشر مسار تعليمي؟ اضغط هنا

$widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks from $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$

97   0   0.0 ( 0 )
 نشر من قبل Masahide Manabe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ supersymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$

قيم البحث

اقرأ أيضاً

In $SU(N)$ gauge theory, it is argued recently that there exists a mixed anomaly between the CP symmetry and the 1-form $mathbb{Z}_N$ symmetry at $theta=pi$, and the anomaly matching requires CP to be spontaneously broken at $theta=pi$ if the system is in the confining phase. In this paper, we elaborate on this discussion by examining the large volume behavior of the partition functions of the $SU(N)/mathbb{Z}_N$ theory on $T^4$ a la t Hooft. The periodicity of the partition function in $theta$, which is not $2pi$ due to fractional instanton numbers, suggests the presence of a phase transition at $theta=pi$. We propose lattice simulations to study the distribution of the instanton number in $SU(N)/mathbb{Z}_N$ theories. A characteristic shape of the distribution is predicted when the system is in the confining phase. The measurements of the distribution may be useful in understanding the phase structure of the theory.
We study algebras and correlation functions of local operators at half-BPS interfaces engineered by the stacks of D5 or NS5 branes in the 4d $mathcal{N}=4$ super Yang-Mills. The operator algebra in this sector is isomorphic to a truncation of the Yan gian $mathcal{Y}(mathfrak{gl}_n)$. The correlators, encoded in a trace on the Yangian, are controlled by the inhomogeneous $mathfrak{sl}_n$ spin chain, where $n$ is the number of fivebranes: they are given in terms of matrix elements of transfer matrices associated to Verma modules, or equivalently of products of Baxters Q-operators. This can be viewed as a novel connection between the $mathcal{N}=4$ super Yang-Mills and integrable spin chains. We also remark on analogous constructions involving half-BPS Wilson lines.
118 - Daniel C. Douglas 2021
We generalize Bonahon and Wongs $mathrm{SL}_2(mathbb{C})$-quantum trace map to the setting of $mathrm{SL}_3(mathbb{C})$. More precisely, for each non-zero complex number $q$, we associate to every isotopy class of framed oriented links $K$ in a thick ened punctured surface $mathfrak{S} times (0, 1)$ a Laurent polynomial $mathrm{Tr}_lambda^q(K) = mathrm{Tr}_lambda^q(K)(X_i^q)$ in $q$-deformations $X_i^q$ of the Fock-Goncharov coordinates $X_i$ for a higher Teichm{u}ller space, depending on the choice of an ideal triangulation $lambda$ of the surface $mathfrak{S}$. Along the way, we propose a definition for a $mathrm{SL}_n(mathbb{C})$-version of this invariant.
We investigate chiral zero modes and winding numbers at fixed points on $T^2/mathbb{Z}_N$ orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula $n_+-n_-=(-V_++V_-)/2N$, where $n_{pm}$ are the numbers of the $pm$ chiral zero modes and $V_{pm}$ are the sums of the winding numbers at the fixed points on $T^2/mathbb{Z}_N$. This formula is complementary to our zero-mode counting formula on the magnetized orbifolds with non-zero flux background $M eq 0$, consistently with substituting $M = 0$ for the counting formula $n_+ - n_- = (2M - V_+ + V_-)/2N$.
We propose matter wavefunctions on resolutions of $T^2/mathbb{Z}_N$ singularities with constant magnetic fluxes. In the blow-down limit, the obtained wavefunctions of chiral zero-modes result in those on the magnetized $T^2/mathbb{Z}_N$ orbifold mode ls, but the wavefunctions of $mathbb{Z}_N$-invariant zero-modes receive the blow-up effects around fixed points of $T^2/mathbb{Z}_N$ orbifolds. Such blow-up effects change the selection rules and Yukawa couplings among the chiral zero-modes as well as the modular symmetry, in contrast to those on the magnetized $T^2/mathbb{Z}_N$ orbifold models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا