ترغب بنشر مسار تعليمي؟ اضغط هنا

From Threebranes to Large N Gauge Theories

92   0   0.0 ( 0 )
 نشر من قبل Igor Klebanov
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English
 تأليف Igor R. Klebanov




اسأل ChatGPT حول البحث

This is a brief introductory review of the AdS/CFT correspondence and of the ideas that led to its formulation. Emphasis is placed on dualities between conformal large $N$ gauge theories in 4 dimensions and string backgrounds of the form $AdS_5times X_5$. Attempts to generalize this correspondence to asymptotically free theories are also included.

قيم البحث

اقرأ أيضاً

In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain fami lies of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.
The gluonic field created by a static quark anti-quark pair is described via the AdS/CFT correspondence by a string connecting the pair which is located on the boundary of AdS. Thus the gluonic field in a strongly coupled large N CFT has a stringy sp ectrum of excitations. We trace the stability of these excitations to a combination of large N suppressions and energy conservation. Comparison of the physics of the N=infinity flux tube in the {cal N}=4 SYM theory at weak and strong coupling shows that the excitations are present only above a certain critical coupling. The density of states of a highly excited string with a fold reaching towards the horizon of AdS is in exact agreement at strong coupling with that of the near-threshold states found in a ladder diagram model of the weak-strong coupling transition. We also study large distance correlations of local operators with a Wilson loop, and show that the fall off at weak coupling and N=infinity (i.e. strictly planar diagrams) matches the strong coupling predictions given by the AdS/CFT correspondence, rather than those of a weakly coupled U(1) gauge theory.
We study N =4 super Yang-Mills theories on a three sphere with two kinds of chemical potentials. One is associated with the R-symmetry and the other with the rotational symmetry of S^3 (SO(4) symmetry). These correspond to the charged Kerr-AdS black holes via AdS/CFT. The exact partition functions at zero coupling are computed and the thermodynamical properties are studied. We find a nontrivial gap between the confinement/deconfinement transition line and the boundary of the phase diagram when we include more than four chemical potentials. In the dual gravity, we find such a gap in the phase diagram to study the thermodynamics of the charged Kerr-AdS black hole. This shows that the qualitative phase structures agree between the both sides. We also find that the ratio of the thermodynamical quantities is almost well-known factor 3/4 even at the low temperature.
We classify the spectrum, family structure and stability of Nielsen-Olesen vortices embedded in a larger gauge group when the vacuum manifold is related to a symmetric space.
Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry -broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the $Nrightarrowinfty$ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. In certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global $mathbb Z_2$ or $U(1)$ symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the masses (squared) added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the $Nrightarrowinfty$ limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا