ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux Modularity, F-Theory, and Rational Models

112   0   0.0 ( 0 )
 نشر من قبل Richard Nally
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will address two natural follow-up questions, of both a physical and mathematical nature, that are surprisingly closely related. First, in passing from a complex manifold to a rational variety, as we must do to study modularity, we are implicitly choosing a rational model for the threefold; how do different choices of rational model affect our results? Second, the same modular forms are associated to elliptic curves over $mathbb{Q}$; are these elliptic curves found anywhere in the physical setup? By studying the F-theory uplift of the supersymmetric flux vacua found in the compactification of IIB string theory on (the mirror of) the Calabi-Yau hypersurface $X$ in $mathbb{P}(1,1,2,2,2)$, we find a one-parameter family of elliptic curves whose associated eigenforms exactly match those associated to $X$. Actually, we find two such families, corresponding to two different choices of rational models for the same family of Calabi-Yaus.



قيم البحث

اقرأ أيضاً

We study a perturbation family of N=2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connecte d to the theory of bilateral hypergeometric q-series, and to modular q-characters of a class of conformal field theories in a certain massless limit. Turning on 3d Wilson lines at torsion points leads to mock modular behavior. Perturbed correlators in the IR regime are computed by determining the UV-IR map in the presence of deformations.
Motivated by questions related to the landscape of flux compactifications, we combine new and existing techniques into a systematic, streamlined approach for computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A central feature of our approach is the conjecturally resolution-independent intersection pairing of the vertical part of the integer middle cohomology of smooth elliptic CY fourfolds, relevant for computing chiral indices and related aspects of 4D F-theory flux vacua. We illustrate our approach by analyzing vertical flux backgrounds for F-theory models with simple, simply-laced gauge groups and generic matter content, as well as models with U(1) gauge factors. We explicitly analyze resolutions of these F-theory models in which the elliptic fiber is realized as a cubic in $mathbb P^2$ over an arbitrary (e.g., not necessarily toric) smooth base, and confirm the resolution-independence of the intersection pairing of the vertical part of the middle cohomology. In each model we study, we find that vertical flux backgrounds can produce nonzero multiplicities for all anomaly-free chiral matter field combinations, suggesting that F-theory geometry imposes no additional linear constraints beyond those implied by anomaly cancellation.
We find and propose an explanation for a large variety of modularity-related symmetries in problems of 3-manifold topology and physics of 3d $mathcal{N}=2$ theories where such structures a priori are not manifest. These modular structures include: mo ck modular forms, $SL(2,mathbb{Z})$ Weil representations, quantum modular forms, non-semisimple modular tensor categories, and chiral algebras of logarithmic CFTs.
We examine the vacuum structure of 4D effective theories of moduli fields in spacetime compactifications with quantized background fluxes. Imposing the no-scale structure for the volume deformations, we numerically investigate the distributions of fl ux vacua of the effective potential in complex structure moduli and axio-dilaton directions for two explicit examples in Type IIB string theory and F-theory compactifications. It turns out that distributions of non-supersymmetric flux vacua exhibit a non-increasing functional behavior of several on-shell quantities with respect to the string coupling. We point out that this phenomena can be deeply connected with a previously-reported possible correspondence between the flux vacua in moduli stabilization problem and the attractor mechanism in supergravity, and our explicit demonstration implies that such a correspondence generically exist even in the framework of F-theory. In particular, we confirm that the solutions of the effective potential we explicitly evaluated in Type IIB and F-theory flux compactifications indeed satisfy the generalized form of the attractor equations simultaneously.
Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundle s and can be thought of as generalizations of spin bundles. We explain how these root bundles are linked to inequivalent F-theory gauge potentials of a $G_4$-flux. While this observation is interesting in its own right, it is particularly valuable for F-theory Standard Model constructions. In aiming for MSSMs, it is desired to argue for the absence of vector-like exotics. We work out the root bundle constraints on all matter curves in the largest class of currently-known F-theory Standard Model constructions without chiral exotics and gauge coupling unification. On each matter curve, we conduct a systematic bottom-analysis of all solutions to the root bundle constraints and all spin bundles. Thereby, we derive a lower bound for the number of combinations of root bundles and spin bundles whose cohomologies satisfy the physical demand of absence of vector-like pairs. On a technical level, this systematic study is achieved by a well-known diagrammatic description of root bundles on nodal curves. We extend this description by a counting procedure, which determines the cohomologies of so-called limit root bundles on full blow-ups of nodal curves. By use of deformation theory, these results constrain the vector-like spectra on the smooth matter curves in the actual F-theory geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا