ﻻ يوجد ملخص باللغة العربية
Small cell networks with dynamic time-division duplex (D-TDD) have emerged as a potential solution to address the asymmetric traffic demands in 5G wireless networks. By allowing the dynamic adjustment of cell-specific UL/DL configuration, D-TDD flexibly allocates percentage of subframes to UL and DL transmissions to accommodate the traffic within each cell. However, the unaligned transmissions bring in extra interference which degrades the potential gain achieved by D-TDD. In this work, we propose an analytical framework to study the performance of multi-antenna small cell networks with clustered D-TDD, where cell clustering is employed to mitigate the interference from opposite transmission direction in neighboring cells. With tools from stochastic geometry, we derive explicit expressions and tractable tight upper bounds for success probability and network throughput. The proposed analytical framework allows to quantify the effect of key system parameters, such as UL/DL configuration, cluster size, antenna number, and SINR threshold. Our results show the superiority of the clustered D-TDD over the traditional D-TDD, and reveal the fact that there exists an optimal cluster size for DL performance, while UL performance always benefits from a larger cluster.
In this paper, we investigate the uplink transmission performance of low-power wide-area (LPWA) networks with regards to coexisting radio modules. We adopt long range (LoRa) radio technique as an example of the network of focus even though our analys
In this work the modeling and calibration method of reciprocity error in a coherent TDD coordinated multi-point (CoMP) joint transmission (JT) system are addressed. The modeling includes parameters such as amplitude gains and phase differences of RF
This paper investigates the physical-layer security for a random indoor visible light communication (VLC) network with imperfect channel state information (CSI) and a protected zone. The VLC network consists of three nodes, i.e., a transmitter (Alice
Although in cellular networks full-duplex and dynamic time-division duplexing promise increased spectrum efficiency, their potential is so far challenged by increased interference. While previous studies have shown that self-interference can be suppr
Traditional macro-cell networks are experiencing an upsurge of data traffic, and small-cells are deployed to help offload the traffic from macro-cells. Given the massive deployment of small-cells in a macro-cell, the aggregate power consumption of sm