ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the uplink transmission performance of low-power wide-area (LPWA) networks with regards to coexisting radio modules. We adopt long range (LoRa) radio technique as an example of the network of focus even though our analysis can be easily extended to other situations. We exploit a new topology to model the network, where the node locations of LoRa follow a Poisson cluster process (PCP) while other coexisting radio modules follow a Poisson point process (PPP). Unlike most of the performance analysis based on stochastic geometry, we take noise into consideration. More specifically, two models, with a fixed and a random number of active LoRa nodes in each cluster, respectively, are considered. To obtain insights, both the exact and simple approximated expressions for coverage probability are derived. Based on them, area spectral efficiency and energy efficiency are obtained. From our analysis, we show how the performance of LPWA networks can be enhanced through adjusting the density of LoRa nodes around each LoRa receiver. Moreover, the simulation results unveil that the optimal number of active LoRa nodes in each cluster exists to maximize the area spectral efficiency.
Small cell networks with dynamic time-division duplex (D-TDD) have emerged as a potential solution to address the asymmetric traffic demands in 5G wireless networks. By allowing the dynamic adjustment of cell-specific UL/DL configuration, D-TDD flexi
Simultaneous transmitting and reflecting intelligent omini-surfaces (STAR-IOSs) are able to achieve full coverage smart radio environments. By splitting the energy or altering the active number of STAR-IOS elements, STAR-IOSs provide high flexibility
A K-tier heterogeneous mmWave uplink cellular network with clustered user equipments (UEs) is considered in this paper. In particular, UEs are assumed to be clustered around small-cell base stations (BSs) according to a Gaussian distribution, leading
The conventional LoRa system is not able to sustain long-range communication over fading channels. To resolve the challenging issue, this paper investigates a two-hop opportunistic amplify-and-forward relaying LoRa system. Based on the best relay-sel
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a