ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-Duplex and Dynamic-TDD: Pushing the Limits of Spectrum Reuse in Multi-Cell Communications

147   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although in cellular networks full-duplex and dynamic time-division duplexing promise increased spectrum efficiency, their potential is so far challenged by increased interference. While previous studies have shown that self-interference can be suppressed to a sufficient level, we show that the cross-link interference for both duplexing modes, especially from base station to base station, is the remaining challenge in multi-cell networks, restricting the uplink performance. Using beamforming techniques of low-complexity, we show that this interference can be mitigated, and that full-duplex and dynamic time-division duplexing can substantially increase the capacity of multi-cell networks. Our results suggest that if we can control the cross link interference in full-duplex, then we can almost double the multi cell network capacity as well as user throughput. Therefore, the techniques in this paper have the potentiality to enable a smooth introduction of full-duplex into cellular systems.



قيم البحث

اقرأ أيضاً

In this article, we address the challenges of transmitter-receiver isolation in emph{mobile full-duplex devices}, building on shared-antenna based transceiver architecture. Firstly, self-adaptive analog RF cancellation circuitry is required, since th e capability to track time-varying self-interference coupling characteristics is of utmost importance in mobile devices. In addition, novel adaptive nonlinear DSP methods are also required for final self-interference suppression at digital baseband, since mobile-scale devices typically operate under highly nonlinear low-cost RF components. In addition to describing above kind of advanced circuit and signal processing solutions, comprehensive RF measurement results from a complete demonstrator implementation are also provided, evidencing beyond 40~dB of active RF cancellation over an 80 MHz waveform bandwidth with a highly nonlinear transmitter power amplifier. Measured examples also demonstrate the good self-healing characteristics of the developed control loop against fast changes in the coupling channel. Furthermore, when complemented with nonlinear digital cancellation processing, the residual self-interference level is pushed down to the noise floor of the demonstration system, despite the harsh nonlinear nature of the self-interference. These findings indicate that deploying the full-duplex principle can indeed be feasible also in mobile devices, and thus be one potential technology in, e.g., 5G and beyond radio systems.
Small cell networks with dynamic time-division duplex (D-TDD) have emerged as a potential solution to address the asymmetric traffic demands in 5G wireless networks. By allowing the dynamic adjustment of cell-specific UL/DL configuration, D-TDD flexi bly allocates percentage of subframes to UL and DL transmissions to accommodate the traffic within each cell. However, the unaligned transmissions bring in extra interference which degrades the potential gain achieved by D-TDD. In this work, we propose an analytical framework to study the performance of multi-antenna small cell networks with clustered D-TDD, where cell clustering is employed to mitigate the interference from opposite transmission direction in neighboring cells. With tools from stochastic geometry, we derive explicit expressions and tractable tight upper bounds for success probability and network throughput. The proposed analytical framework allows to quantify the effect of key system parameters, such as UL/DL configuration, cluster size, antenna number, and SINR threshold. Our results show the superiority of the clustered D-TDD over the traditional D-TDD, and reveal the fact that there exists an optimal cluster size for DL performance, while UL performance always benefits from a larger cluster.
Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral ef ficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.
The recent progress in the area of self-interference cancellation (SIC) design has enabled the development of full-duplex (FD) single and multiple antenna systems. In this paper, we propose a design for FD eNodeB (eNB) and user equipment (UE) for 5G networks. The use of FD operation enables simultaneous in-band uplink and downlink operation and thereby cutting down the spectrum requirement by half. FD operation requires the same subcarrier allocation to UE in both uplink and downlink. Long Term Evolution LTE) uses orthogonal frequency division multiple access (OFDMA) for downlink. To enable FD operation, we propose using single carrier frequency division multiple access SC-FDMA) for downlink along with the conventional method of using it for uplink. Taking advantage of channel reciprocity, singular value decomposition (SVD) based eamforming in the downlink allows multiple users (MU) to operate on same set of subcarriers. In uplink, frequency domain minimum mean square error (MMSE) equalizer along with successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of users operating in the same set of subcarriers. The work includes simulations showing efficient FD operation both at UE and eNB for downlink and uplink respectively.
Theoretically, full-duplex (FD) communications can double the spectral-efficiency (SE) of a wireless link if the problem of self-interference (SI) is completely eliminated. Recent developments towards SI cancellation techniques have allowed to realiz e the FD communications on low-power transceivers, such as small-cell (SC) base stations. Consequently, the FD technology is being considered as a key enabler of 5G and beyond networks. In the context of 5G, FD communications have been initially investigated in a single SC and then into multiple SC environments. Due to FD operations, a single SC faces residual SI and intra-cell co-channel interference (CCI), whereas multiple SCs face additional inter-cell CCI, which grows with the number of neighboring cells. The surge of interference in the multi-cell environment poses the question of the feasibility of FD communications. In this article, we first review the FD communications in single and multiple SC environments and then provide the state-of-the-art for the CCI mitigation techniques, as well as FD feasibility studies in a multi-cell environment. Further, through numerical simulations, the SE performance gain of the FD communications in ultra-dense massive multiple input multiple-output enabled millimeter wave SCs is presented. Finally, potential open research challenges of multi-cell FD communications are highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا