ﻻ يوجد ملخص باللغة العربية
This paper investigates the physical-layer security for a random indoor visible light communication (VLC) network with imperfect channel state information (CSI) and a protected zone. The VLC network consists of three nodes, i.e., a transmitter (Alice), a legitimate receiver (Bob), and an eavesdropper (Eve). Alice is fixed in the center of the ceiling, and the emitted signal at Alice satisfies the non-negativity and the dimmable average optical intensity constraint. Bob and Eve are randomly deployed on the receiver plane. By employing the protected zone and considering the imperfect CSI, the stochastic characteristics of the channel gains for both the main and the eavesdropping channels is first analyzed. After that, the closed-form expressions of the average secrecy capacity and the lower bound of secrecy outage probability are derived, respectively. Finally, Monte-Carlo simulations are provided to verify the accuracy of the derived theoretical expressions. Moreover, the impacts of the nominal optical intensity, the dimming target, the protected zone and the imperfect CSI on secrecy performance are discussed, respectively.
In this paper, we present the ergodic sum secrecy rate (ESSR) analysis of an underlay spectrum sharing non-orthogonal multiple access (NOMA) system. We consider the scenario where the power transmitted by the secondary transmitter (ST) is constrained
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a
In this paper, we investigate the physical-layer security for a spatial modulation (SM) based indoor visible light communication (VLC) system, which includes multiple transmitters, a legitimate receiver, and a passive eavesdropper (Eve). At the trans
Small cell networks with dynamic time-division duplex (D-TDD) have emerged as a potential solution to address the asymmetric traffic demands in 5G wireless networks. By allowing the dynamic adjustment of cell-specific UL/DL configuration, D-TDD flexi
In this paper, we investigate the performance of a reconfigurable intelligent surface (RIS)-assisted dual-hop mixed radio-frequency underwater wireless optical communication (RF-UWOC) system. An RIS is an emerging and low-cost technology that aims to