ﻻ يوجد ملخص باللغة العربية
Two-dimensional singular decomposition (2DSVD) has been widely used for image processing tasks, such as image reconstruction, classification, and clustering. However, traditional 2DSVD algorithm is based on the mean square error (MSE) loss, which is sensitive to outliers. To overcome this problem, we propose a robust 2DSVD framework based on a generalized kernel risk sensitive loss (GKRSL-2DSVD) which is more robust to noise and and outliers. Since the proposed objective function is non-convex, a majorization-minimization algorithm is developed to efficiently solve it with guaranteed convergence. The proposed framework has inherent properties of processing non-centered data, rotational invariant, being easily extended to higher order spaces. Experimental results on public databases demonstrate that the performance of the proposed method on different applications significantly outperforms that of all the benchmarks.
Quaternion singular value decomposition (QSVD) is a robust technique of digital watermarking which can extract high quality watermarks from watermarked images with low distortion. In this paper, QSVD technique is further investigated and an efficient
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
We propose a generalized formulation of the Huber loss. We show that with a suitable function of choice, specifically the log-exp transform; we can achieve a loss function which combines the desirable properties of both the absolute and the quadratic
Since being analyzed by Rokhlin, Szlam, and Tygert and popularized by Halko, Martinsson, and Tropp, randomized Simultaneous Power Iteration has become the method of choice for approximate singular value decomposition. It is more accurate than simpler