ﻻ يوجد ملخص باللغة العربية
Since being analyzed by Rokhlin, Szlam, and Tygert and popularized by Halko, Martinsson, and Tropp, randomized Simultaneous Power Iteration has become the method of choice for approximate singular value decomposition. It is more accurate than simpler sketching algorithms, yet still converges quickly for any matrix, independently of singular value gaps. After $tilde{O}(1/epsilon)$ iterations, it gives a low-rank approximation within $(1+epsilon)$ of optimal for spectral norm error. We give the first provable runtime improvement on Simultaneous Iteration: a simple randomized block Krylov method, closely related to the classic Block Lanczos algorithm, gives the same guarantees in just $tilde{O}(1/sqrt{epsilon})$ iterations and performs substantially better experimentally. Despite their long history, our analysis is the first of a Krylov subspace method that does not depend on singular value gaps, which are unreliable in practice. Furthermore, while it is a simple accuracy benchmark, even $(1+epsilon)$ error for spectral norm low-rank approximation does not imply that an algorithm returns high quality principal components, a major issue for data applications. We address this problem for the first time by showing that both Block Krylov Iteration and a minor modification of Simultaneous Iteration give nearly optimal PCA for any matrix. This result further justifies their strength over non-iterative sketching methods. Finally, we give insight beyond the worst case, justifying why both algorithms can run much faster in practice than predicted. We clarify how simple techniques can take advantage of common matrix properties to significantly improve runtime.
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its comp
When the amount of entanglement in a quantum system is limited, the relevant dynamics of the system is restricted to a very small part of the state space. When restricted to this subspace the description of the system becomes efficient in the system
We introduce PyParSVDfootnote{https://github.com/Romit-Maulik/PyParSVD}, a Python library that implements a streaming, distributed and randomized algorithm for the singular value decomposition. To demonstrate its effectiveness, we extract coherent st