ﻻ يوجد ملخص باللغة العربية
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{Omega}$ be the convolution singular integral operator with kernel $frac{Omega(x)}{|x|^n}$. For $bin{rm BMO}(mathbb{R}^n)$, let $T_{Omega,,b}$ be the commutator of $T_{Omega}$. In this paper, by establishing suitable sparse dominations, the authors establish some weak type endpoint estimates of $Llog L$ type for $T_{Omega,,b}$ when $Omegain L^q(S^{n-1})$ for some $qin (1,,infty]$.
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{Omega}$ be the homogeneous singular integral operator with kernel $frac{Omega(x)}{|x|^d}$ and $T_{Omega,,b}$ be the commutator of $T_{Omega}$ with
Let $Omega_1,Omega_2$ be functions of homogeneous of degree $0$ and $vecOmega=(Omega_1,Omega_2)in Llog L(mathbb{S}^{n-1})times Llog L(mathbb{S}^{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{v
We study the commutators $[b,T]$ of pointwise multiplications and bi-parameter Calderon-Zygmund operators and characterize their off-diagonal $L^{p_1}L^{p_2} to L^{q_1}L^{q_2}$ boundedness in the range $(1,infty)$ for several of the mixed norm integrability exponents.
This article develops a novel approach to the representation of singular integral operators of Calderon-Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a fini
By a reduction method, the limiting weak-type behaviors of factional maximal operators and fractional integrals are established without any smoothness assumption on the kernel, which essentially improve and extend previous results. As a byproduct, we