ﻻ يوجد ملخص باللغة العربية
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{Omega}$ be the homogeneous singular integral operator with kernel $frac{Omega(x)}{|x|^d}$ and $T_{Omega,,b}$ be the commutator of $T_{Omega}$ with symbol $b$. In this paper, we prove that if $Omegain L(log L)^2(S^{d-1})$, then for $bin {rm BMO}(mathbb{R}^d)$, $T_{Omega,,b}$ satisfies an endpoint estimate of $Llog L$ type.
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{Omega}$ be the convolution singular integral operator with kernel $frac{Omega(x)}{|x|^n}$. For $bin{rm BMO}(mathbb{R}^n)$, let $T_{Omega,,b}$ be th
Volterra integral operators with non-sign-definite degenerate kernels $A(x,t)= sum_{k=0}^n A_k(x,t)$, $A_k(x,t)= a_k (x) t^k$, are studied acting from one weighted $L_2$ space on $(0,+infty)$ to another. Imposing an integral doubling condition on one
This article develops a novel approach to the representation of singular integral operators of Calderon-Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a fini
Let $Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_Omega$ associated with rough kernel $Omega$. We show
We establish $L^2$ boundedness of all nice parabolic singular integrals on Good Parabolic Graphs, aka {em regular} Lip(1,1/2) graphs. The novelty here is that we include non-homogeneous kernels, which are relevant to the theory of parabolic uniform r