ﻻ يوجد ملخص باللغة العربية
Let $Omega_1,Omega_2$ be functions of homogeneous of degree $0$ and $vecOmega=(Omega_1,Omega_2)in Llog L(mathbb{S}^{n-1})times Llog L(mathbb{S}^{n-1})$. In this paper, we investigate the limiting weak-type behavior for bilinear maximal function $M_{vecOmega}$ and bilinear singular integral $T_{vecOmega}$ associated with rough kernel $vecOmega$. For all $f,gin L^1(mathbb{R}^n)$, we show that $$lim_{lambdato 0^+}lambda |big{ xinmathbb{R}^n:M_{vecOmega}(f_1,f_2)(x)>lambdabig}|^2 = frac{|Omega_1Omega_2|_{L^{1/2}(mathbb{S}^{n-1})}}{omega_{n-1}^2}prodlimits_{i=1}^2| f_i|_{L^1}$$ and $$lim_{lambdato 0^+}lambda|big{ xinmathbb{R}^n:| T_{vecOmega}(f_1,f_2)(x)|>lambdabig}|^{2} = frac{|Omega_1Omega_2|_{L^{1/2}(mathbb{S}^{n-1})}}{n^2}prodlimits_{i=1}^2| f_i|_{L^1}.$$ As consequences, the lower bounds of weak-type norms of $M_{vecOmega}$ and $T_{vecOmega}$ are obtained. These results are new even in the linear case. The corresponding results for rough bilinear fractional maximal function and fractional integral operator are also discussed.
By a reduction method, the limiting weak-type behaviors of factional maximal operators and fractional integrals are established without any smoothness assumption on the kernel, which essentially improve and extend previous results. As a byproduct, we
Let $Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{Omega}$ be the convolution singular integral operator with kernel $frac{Omega(x)}{|x|^n}$. For $bin{rm BMO}(mathbb{R}^n)$, let $T_{Omega,,b}$ be th
Let $Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_Omega$ associated with rough kernel $Omega$. We show
It is well known that the weak ($1,1$) bounds doesnt hold for the strong maximal operators, but it still enjoys certain weak $Llog L$ type norm inequality. Let $Phi_n(t)=t(1+(log^+t)^{n-1})$ and the space $L_{Phi_n}({mathbb R^{n}})$ be the set of all
In this note the weak type estimates for fractional integrals are studied. More precisely, we adapt the arguments of Domingo-Salazar, Lacey, and Rey to obtain improvements for the endpoint weak type estimates for regular fractional sparse operators.