ﻻ يوجد ملخص باللغة العربية
We study the commutators $[b,T]$ of pointwise multiplications and bi-parameter Calderon-Zygmund operators and characterize their off-diagonal $L^{p_1}L^{p_2} to L^{q_1}L^{q_2}$ boundedness in the range $(1,infty)$ for several of the mixed norm integrability exponents.
We find a minimal notion of non-degeneracy for bilinear singular integral operators $T$ and identify testing conditions on the multiplying function $b$ that characterize the $L^ptimes L^qto L^r,$ $1<p,q<infty$ and $r>frac{1}{2},$ boundedness of the b
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp con
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
This paper gives the pointwise sparse dominations for variation operators of singular integrals and commutators with kernels satisfying the $L^r$-H{o}rmander conditions. As applications, we obtain the strong type quantitative weighted bounds for such
The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+