ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-diagonal estimates for commutators of bi-parameter singular integrals

169   0   0.0 ( 0 )
 نشر من قبل Tuomas Oikari
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Tuomas Oikari




اسأل ChatGPT حول البحث

We study the commutators $[b,T]$ of pointwise multiplications and bi-parameter Calderon-Zygmund operators and characterize their off-diagonal $L^{p_1}L^{p_2} to L^{q_1}L^{q_2}$ boundedness in the range $(1,infty)$ for several of the mixed norm integrability exponents.



قيم البحث

اقرأ أيضاً

82 - Tuomas Oikari 2021
We find a minimal notion of non-degeneracy for bilinear singular integral operators $T$ and identify testing conditions on the multiplying function $b$ that characterize the $L^ptimes L^qto L^r,$ $1<p,q<infty$ and $r>frac{1}{2},$ boundedness of the b ilinear commutator $[b,T]_1(f,g) = bT(f,g) - T(bf,g).$ Our arguments cover almost all arrangements of the integrability exponents $p,q,r,$ with a single open problem presented in the end. Additionally, the arguments extend to the multilinear setting.
139 - Shuichi Sato 2010
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp con dition for the kernels. Also, we prove some weighted $L^p$ inequalities for the operators.
210 - Shuichi Sato 2008
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
This paper gives the pointwise sparse dominations for variation operators of singular integrals and commutators with kernels satisfying the $L^r$-H{o}rmander conditions. As applications, we obtain the strong type quantitative weighted bounds for such variation operators as well as the weak-type quantitative weighted bounds for the variation operators of singular integrals and the quantitative weighted weak-type endpoint estimates for variation operators of commutators, which are completely new even in the unweighted case. In addition, we also obtain the local exponential decay estimates for such variation operators.
The purpose of this paper is to establish some one-sided estimates for oscillatory singular integrals. The boundedness of certain oscillatory singular integral on weighted Hardy spaces $H^{1}_{+}(w)$ is proved. It is here also show that the $H^{1}_{+ }(w)$ theory of oscillatory singular integrals above cannot be extended to the case of $H^{q}_{+}(w)$ when $0<q<1$ and $win A_{p}^{+}$, a wider weight class than the classical Muckenhoupt class. Furthermore, a criterion on the weighted $L^{p}$-boundednesss of the oscillatory singular integral is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا