ﻻ يوجد ملخص باللغة العربية
We consider two cobalt-based full-Heusler compounds CoFeTiAl and Co$_2$FeSi, for which Coulomb correlation effects play an important role. Since the standard GGA scheme does not provide a precise description of the electronic properties near the Fermi level, we use a meta-GGA functional capable to improve the description of the electronic properties of CoFeTiAl and Co$_2$FeSi. In particular, we find a better agreement with the experiment for the magnetic moment and the energy-band gap. Moreover, our calculations show that pressure enhances the insulating properties of Co$_2$FeSi and CoTiFeAl.
We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domai
We present experimental XMLD spectra measured on epitaxial (001)-oriented thin Co$_{2}$FeSi films, which are rich in features and depend sensitively on the degree of atomic order and interdiffusion from capping layers. Al- and Cr-capped films with di
By means of first-principles density functional theory calculations, we find that hydrogen-passivated ultrathin silicon nanowires (SiNWs) along [100] direction with symmetrical multiple surface dangling bonds (SDBs) and boron doping can have a half-m
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist
A Co$_2$FeSi (CFS) film with L2$_1$ structure was irradiated with different fluences of 30 keV Ga$^+$ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the