ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion beam induced modification of exchange interaction and spin-orbit coupling in the Co$_2$FeSi Heusler compound

72   0   0.0 ( 0 )
 نشر من قبل Jaroslav Hamrle
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Co$_2$FeSi (CFS) film with L2$_1$ structure was irradiated with different fluences of 30 keV Ga$^+$ ions. Structural modifications were subsequently studied using the longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. Both the coercivity and the LMOKE amplitude were found to show a similar behavior upon irradiation: they are nearly constant up to ion fluences of $approx6times10^{15}$ ion/cm$^2$, while they decrease with further increasing fluences and finally vanish at a fluence of $approx9times10^{16}$ ion/cm$^2$, when the sample becomes paramagnetic. However, contrary to this behavior, the QMOKE signal nearly vanishes even for the smallest applied fluence of $3times10^{14}$ ion/cm$^2$. We attribute this reduction of the QMOKE signal to an irradiation-induced degeneration of second or higher order spin-orbit coupling, which already happens at small fluences of 30 keV Ga$^+$ ions. On the other hand, the reduction of coercivity and LMOKE signal with high ion fluences is probably caused by a reduction of the exchange interaction within the film material.



قيم البحث

اقرأ أيضاً

Co$_2$FeSi(100) films with L2$_1$ structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mde g, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co$_2$FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domai ns in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 $mu_B/f.u.$ at low temperatures. The temperature dependence of the resistivity $rho_{xx}(T)$ exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. $rho_{xx}(H)$ shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.
170 - Lijun Zhu , Lujun Zhu , Xin Ma 2020
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experim ent evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.
87 - J. Li , X. Wang , J.J. Deng 2019
The mechanism of spontaneous exchange bias (SEB) and the dominant factor of its blocking temperature are still unclear in Heusler alloys. Here, the related investigations are performed in Mn2Ni1.5Al0.5 Heusler alloys with SEB. The results of both mag netic measurements and first-principles calculations confirmed that spin frustrated and unfrustrated antiferromagnetic (AFM) states coexist there and they have different magnetic anisotropies, which are essential for SEB. Based on a series of measurement strategies, we demonstrate that the frustrated AFM state undergoes a first-order magnetic transition to the superferromagnet (SFM) state with the help of an external magnetic field, and SFM is retained due to the first-order property of the magnetic transition. SEB originates from the interface coupling of multiple sublattices between the unfrustrated AFM state and SFM state. By analyzing the Arrott plot using the Landau model, we found that the internal field of the system dominates the blocking temperature of SEB, which paves the way for improving the blocking temperature.
We consider two cobalt-based full-Heusler compounds CoFeTiAl and Co$_2$FeSi, for which Coulomb correlation effects play an important role. Since the standard GGA scheme does not provide a precise description of the electronic properties near the Ferm i level, we use a meta-GGA functional capable to improve the description of the electronic properties of CoFeTiAl and Co$_2$FeSi. In particular, we find a better agreement with the experiment for the magnetic moment and the energy-band gap. Moreover, our calculations show that pressure enhances the insulating properties of Co$_2$FeSi and CoTiFeAl.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا