ﻻ يوجد ملخص باللغة العربية
By means of first-principles density functional theory calculations, we find that hydrogen-passivated ultrathin silicon nanowires (SiNWs) along [100] direction with symmetrical multiple surface dangling bonds (SDBs) and boron doping can have a half-metallic ground state with 100% spin polarization, where the half-metallicity is shown quite robust against external electric fields. Under the circumstances with various SDBs, the H-passivated SiNWs can also be ferromagnetic or antiferromagnetic semiconductors. The present study not only offers a possible route to engineer half-metallic SiNWs without containing magnetic atoms but also sheds light on manipulating spin-dependent properties of nanowires through surface passivation.
From first-principles calculations, we predict that transition metal (TM) atom doped silicon nanowires have a half-metallic ground state. They are insulators for one spin-direction, but show metallic properties for the opposite spin direction. At hig
Si dangling bonds without H termination at the interface of quasi-free standing monolayer graphene (QFMLG) are known scattering centers that can severely affect carrier mobility. In this report, we study the atomic and electronic structure of Si dang
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting
The role of reduced dimensionality and of the surface on electron-phonon (e-ph) coupling in silicon nanowires is determined from first principles. Surface termination and chemistry is found to have a relatively small influence, whereas reduced dimens
We report a first principles systematic study of atomic, electronic, and magnetic properties of hydrogen saturated silicon nanowires (H-SiNW) which are doped by transition metal (TM) atoms placed at various interstitial sites. Our results obtained wi