ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbiased Learning to Rank: Online or Offline?

332   0   0.0 ( 0 )
 نشر من قبل Qingyao Ai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased learning algorithms with logged data, namely the textit{offline} unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely the textit{online} learning to rank. While their definitions of textit{unbiasness} are different, these two types of ULTR algorithms share the same goal -- to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this paper, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate six state-of-the-art ULTR algorithms and find that most of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings could provide important insights and guideline for choosing and deploying ULTR algorithms in practice.

قيم البحث

اقرأ أيضاً

381 - Anh Tran , Tao Yang , Qingyao Ai 2021
Learning to rank systems has become an important aspect of our daily life. However, the implicit user feedback that is used to train many learning to rank models is usually noisy and suffered from user bias (i.e., position bias). Thus, obtaining an u nbiased model using biased feedback has become an important research field for IR. Existing studies on unbiased learning to rank (ULTR) can be generalized into two families-algorithms that attain unbiasedness with logged data, offline learning, and algorithms that achieve unbiasedness by estimating unbiased parameters with real-time user interactions, namely online learning. While there exist many algorithms from both families, there lacks a unified way to compare and benchmark them. As a result, it can be challenging for researchers to choose the right technique for their problems or for people who are new to the field to learn and understand existing algorithms. To solve this problem, we introduced ULTRA, which is a flexible, extensible, and easily configure ULTR toolbox. Its key features include support for multiple ULTR algorithms with configurable hyperparameters, a variety of built-in click models that can be used separately to simulate clicks, different ranking model architecture and evaluation metrics, and simple learning to rank pipeline creation. In this paper, we discuss the general framework of ULTR, briefly describe the algorithms in ULTRA, detailed the structure, and pipeline of the toolbox. We experimented on all the algorithms supported by ultra and showed that the toolbox performance is reasonable. Our toolbox is an important resource for researchers to conduct experiments on ULTR algorithms with different configurations as well as testing their own algorithms with the supported features.
170 - Ziniu Hu , Yang Wang , Qu Peng 2018
Although click data is widely used in search systems in practice, so far the inherent bias, most notably position bias, has prevented it from being used in training of a ranker for search, i.e., learning-to-rank. Recently, a number of authors have pr oposed new techniques referred to as unbiased learning-to-rank, which can reduce position bias and train a relatively high-performance ranker using click data. Most of the algorithms, based on the inverse propensity weighting (IPW) principle, first estimate the click bias at each position, and then train an unbiased ranker with the estimated biases using a learning-to-rank algorithm. However, there has not been a method for pairwise learning-to-rank that can jointly conduct debiasing of click data and training of a ranker using a pairwise loss function. In this paper, we propose a novel algorithm, which can jointly estimate the biases at click positions and the biases at unclick positions, and learn an unbiased ranker. Experiments on benchmark data show that our algorithm can significantly outperform existing algorithms. In addition, an online A/B Testing at a commercial search engine shows that our algorithm can effectively conduct debiasing of click data and enhance relevance ranking.
Learning to rank is an important problem in machine learning and recommender systems. In a recommender system, a user is typically recommended a list of items. Since the user is unlikely to examine the entire recommended list, partial feedback arises naturally. At the same time, diverse recommendations are important because it is challenging to model all tastes of the user in practice. In this paper, we propose the first algorithm for online learning to rank diverse items from partial-click feedback. We assume that the user examines the list of recommended items until the user is attracted by an item, which is clicked, and does not examine the rest of the items. This model of user behavior is known as the cascade model. We propose an online learning algorithm, cascadelsb, for solving our problem. The algorithm actively explores the tastes of the user with the objective of learning to recommend the optimal diverse list. We analyze the algorithm and prove a gap-free upper bound on its n-step regret. We evaluate cascadelsb on both synthetic and real-world datasets, compare it to various baselines, and show that it learns even when our modeling assumptions do not hold exactly.
Online learning to rank (OL2R) optimizes the utility of returned search results based on implicit feedback gathered directly from users. To improve the estimates, OL2R algorithms examine one or more exploratory gradient directions and update the curr ent ranker if a proposed one is preferred by users via an interleaved test. In this paper, we accelerate the online learning process by efficient exploration in the gradient space. Our algorithm, named as Null Space Gradient Descent, reduces the exploration space to only the emph{null space} of recent poorly performing gradients. This prevents the algorithm from repeatedly exploring directions that have been discouraged by the most recent interactions with users. To improve sensitivity of the resulting interleaved test, we selectively construct candidate rankers to maximize the chance that they can be differentiated by candidate ranking documents in the current query; and we use historically difficult queries to identify the best ranker when tie occurs in comparing the rankers. Extensive experimental comparisons with the state-of-the-art OL2R algorithms on several public benchmarks confirmed the effectiveness of our proposal algorithm, especially in its fast learning convergence and promising ranking quality at an early stage.
Online Learning to Rank (OL2R) algorithms learn from implicit user feedback on the fly. The key of such algorithms is an unbiased estimation of gradients, which is often (trivially) achieved by uniformly sampling from the entire parameter space. This unfortunately introduces high-variance in gradient estimation, and leads to a worse regret of model estimation, especially when the dimension of parameter space is large. In this paper, we aim at reducing the variance of gradient estimation in OL2R algorithms. We project the selected updating direction into a space spanned by the feature vectors from examined documents under the current query (termed the document space for short), after interleaved test. Our key insight is that the result of interleaved test solely is governed by a users relevance evaluation over the examined documents. Hence, the true gradient introduced by this test result should lie in the constructed document space, and components orthogonal to the document space in the proposed gradient can be safely removed for variance reduction. We prove that the projected gradient is an unbiased estimation of the true gradient, and show that this lower-variance gradient estimation results in significant regret reduction. Our proposed method is compatible with all existing OL2R algorithms which rank documents using a linear model. Extensive experimental comparisons with several state-of-the-art OL2R algorithms have confirmed the effectiveness of our proposed method in reducing the variance of gradient estimation and improving overall performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا