ﻻ يوجد ملخص باللغة العربية
Learning to rank systems has become an important aspect of our daily life. However, the implicit user feedback that is used to train many learning to rank models is usually noisy and suffered from user bias (i.e., position bias). Thus, obtaining an unbiased model using biased feedback has become an important research field for IR. Existing studies on unbiased learning to rank (ULTR) can be generalized into two families-algorithms that attain unbiasedness with logged data, offline learning, and algorithms that achieve unbiasedness by estimating unbiased parameters with real-time user interactions, namely online learning. While there exist many algorithms from both families, there lacks a unified way to compare and benchmark them. As a result, it can be challenging for researchers to choose the right technique for their problems or for people who are new to the field to learn and understand existing algorithms. To solve this problem, we introduced ULTRA, which is a flexible, extensible, and easily configure ULTR toolbox. Its key features include support for multiple ULTR algorithms with configurable hyperparameters, a variety of built-in click models that can be used separately to simulate clicks, different ranking model architecture and evaluation metrics, and simple learning to rank pipeline creation. In this paper, we discuss the general framework of ULTR, briefly describe the algorithms in ULTRA, detailed the structure, and pipeline of the toolbox. We experimented on all the algorithms supported by ultra and showed that the toolbox performance is reasonable. Our toolbox is an important resource for researchers to conduct experiments on ULTR algorithms with different configurations as well as testing their own algorithms with the supported features.
Although click data is widely used in search systems in practice, so far the inherent bias, most notably position bias, has prevented it from being used in training of a ranker for search, i.e., learning-to-rank. Recently, a number of authors have pr
How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased le
Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area. Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models, whereas t
Autocomplete (a.k.a Query Auto-Completion, AC) suggests full queries based on a prefix typed by customer. Autocomplete has been a core feature of commercial search engine. In this paper, we propose a novel context-aware neural network based pairwise
Learning to rank is an important problem in machine learning and recommender systems. In a recommender system, a user is typically recommended a list of items. Since the user is unlikely to examine the entire recommended list, partial feedback arises