ﻻ يوجد ملخص باللغة العربية
Online Learning to Rank (OL2R) algorithms learn from implicit user feedback on the fly. The key of such algorithms is an unbiased estimation of gradients, which is often (trivially) achieved by uniformly sampling from the entire parameter space. This unfortunately introduces high-variance in gradient estimation, and leads to a worse regret of model estimation, especially when the dimension of parameter space is large. In this paper, we aim at reducing the variance of gradient estimation in OL2R algorithms. We project the selected updating direction into a space spanned by the feature vectors from examined documents under the current query (termed the document space for short), after interleaved test. Our key insight is that the result of interleaved test solely is governed by a users relevance evaluation over the examined documents. Hence, the true gradient introduced by this test result should lie in the constructed document space, and components orthogonal to the document space in the proposed gradient can be safely removed for variance reduction. We prove that the projected gradient is an unbiased estimation of the true gradient, and show that this lower-variance gradient estimation results in significant regret reduction. Our proposed method is compatible with all existing OL2R algorithms which rank documents using a linear model. Extensive experimental comparisons with several state-of-the-art OL2R algorithms have confirmed the effectiveness of our proposed method in reducing the variance of gradient estimation and improving overall performance.
Online learning to rank (OL2R) optimizes the utility of returned search results based on implicit feedback gathered directly from users. To improve the estimates, OL2R algorithms examine one or more exploratory gradient directions and update the curr
We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, w
How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased le
Learning to rank is an important problem in machine learning and recommender systems. In a recommender system, a user is typically recommended a list of items. Since the user is unlikely to examine the entire recommended list, partial feedback arises
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in la