ترغب بنشر مسار تعليمي؟ اضغط هنا

Newton polytopes and numerical algebraic geometry

75   0   0.0 ( 0 )
 نشر من قبل Taylor Brysiewicz
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Taylor Brysiewicz




اسأل ChatGPT حول البحث

We develop a collection of numerical algorithms which connect ideas from polyhedral geometry and algebraic geometry. The first algorithm we develop functions as a numerical oracle for the Newton polytope of a hypersurface and is based on ideas of Hauenstein and Sottile. Additionally, we construct a numerical tropical membership algorithm which uses the former algorithm as a subroutine. Based on recent results of Esterov, we give an algorithm which recursively solves a sparse polynomial system when the support of that system is either lacunary or triangular. Prior to explaining these results, we give necessary background on polytopes, algebraic geometry, monodromy groups of branched covers, and numerical algebraic geometry.



قيم البحث

اقرأ أيضاً

80 - Taylor Brysiewicz 2018
We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface in the Macaulay2 package NumericalNP.m2. We propose a tropical membership test, relying on this algorithm, for higher codime nsion varieties based on ideas from Hept and Theobald. To showcase this software, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the Luroth invariant.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl es corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types A, B and C.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
This is an expanded version of the two papers Interpolation of Varieties of Minimal Degree and Interpolation Problems: Del Pezzo Surfaces. It is well known that one can find a rational normal curve in $mathbb P^n$ through $n+3$ general points. More r ecently, it was shown that one can always find nonspecial curves through the expected number of general points and linear spaces. After some expository material regarding scrolls, we consider the generalization of this question to varieties of all dimensions and explain why smooth varieties of minimal degree satisfy interpolation. We give twenty-two equivalent formulations of interpolation. We also classify when Castelnuovo curves satisfy weak interpolation. In the appendix, we prove that del Pezzo surfaces satisfy weak interpolation. Our techniques for proving interpolation include deformation theory, degeneration and specialization, and association.
151 - Ofer Gabber , Shane Kelly 2014
We give scheme-theoretic descriptions of the category of fibre functors on the categories of sheaves associated to the Zariski, Nisnevich, etale, rh, cdh, ldh, eh, qfh, and h topologies on the category of separated schemes of finite type over a separ ated noetherian base. Combined with a theorem of Deligne on the existence of enough points, this provides an algebro-geometric description of a conservative family of fibre functors on these categories of sheaves. As an example of an application we show direct image along a closed immersion is exact for all these topologies except qfh. The methods are transportable to other categories of sheaves as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا