ترغب بنشر مسار تعليمي؟ اضغط هنا

Newton-Okounkov polytopes of flag varieties

227   0   0.0 ( 0 )
 نشر من قبل Valentina Kiritchenko
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decomposition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.



قيم البحث

اقرأ أيضاً

For classical groups SL(n), SO(n) and Sp(2n), we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system on the open Schubert cell and is combinatorially r elated to the Gelfand-Zetlin pattern in the same type. In types A and C, we identify the corresponding Newton-Okounkov polytopes with the Feigin-Fourier-Littelmann-Vinberg polytopes. In types B and D, we compute low-dimensional examples and formulate open questions.
We compute the Newton--Okounkov bodies of line bundles on a Bott--Samelson resolution of the complete flag variety of $GL_n$ for a geometric valuation coming from a flag of translated Schubert subvarieties. The Bott--Samelson resolution corresponds t o the decomposition $(s_1)(s_2s_1)(s_3s_2s_1)(ldots)(s_{n-1}ldots s_1)$ of the longest element in the Weyl group, and the Schubert subvarieties correspond to the terminal subwords in this decomposition. We prove that the resulting Newton--Okounkov polytopes for semiample line bundles satisfy the additivity property with respect to the Minkowski sum. In particular, they are Minkowski sums of Newton--Okounkov polytopes of line bundles on the complete flag varieties for $GL_2$,ldots, $GL_{n}$.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl es corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types A, B and C.
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The cons truction is based on a geometric presentation of Schubert cells by Bernstein-Gelfand-Gelfand using Demazure modules. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand-Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.
This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures c oncerning their dimensions, and generalizes the superset method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا