ﻻ يوجد ملخص باللغة العربية
We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface in the Macaulay2 package NumericalNP.m2. We propose a tropical membership test, relying on this algorithm, for higher codimension varieties based on ideas from Hept and Theobald. To showcase this software, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the Luroth invariant.
We develop a collection of numerical algorithms which connect ideas from polyhedral geometry and algebraic geometry. The first algorithm we develop functions as a numerical oracle for the Newton polytope of a hypersurface and is based on ideas of Hau
A biconvex polytope is a convex polytope that is also tropically convex. It is well known that every bounded cell of a tropical linear space is a biconvex polytope, but its converse has been a conjecture. We classify biconvex polytopes, and prove the
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov