ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Software to Compute Newton Polytopes and Tropical Membership

81   0   0.0 ( 0 )
 نشر من قبل Taylor Brysiewicz
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Taylor Brysiewicz




اسأل ChatGPT حول البحث

We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface in the Macaulay2 package NumericalNP.m2. We propose a tropical membership test, relying on this algorithm, for higher codimension varieties based on ideas from Hept and Theobald. To showcase this software, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the Luroth invariant.



قيم البحث

اقرأ أيضاً

74 - Taylor Brysiewicz 2020
We develop a collection of numerical algorithms which connect ideas from polyhedral geometry and algebraic geometry. The first algorithm we develop functions as a numerical oracle for the Newton polytope of a hypersurface and is based on ideas of Hau enstein and Sottile. Additionally, we construct a numerical tropical membership algorithm which uses the former algorithm as a subroutine. Based on recent results of Esterov, we give an algorithm which recursively solves a sparse polynomial system when the support of that system is either lacunary or triangular. Prior to explaining these results, we give necessary background on polytopes, algebraic geometry, monodromy groups of branched covers, and numerical algebraic geometry.
112 - Jaeho Shin 2020
A biconvex polytope is a convex polytope that is also tropically convex. It is well known that every bounded cell of a tropical linear space is a biconvex polytope, but its converse has been a conjecture. We classify biconvex polytopes, and prove the conjecture by constructing a matroid subdivision dual to a biconvex polytope. In particular, we construct matroids from bipartite graphs, and establish the relationship between bipartite graphs and faces of a biconvex polytope. We also show that there is a bijection between monomials and a maximal set of vertices of a biconvex polytope.
A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycl es corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the general framework and survey particular realizations of this approach in types A, B and C.
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo sition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton--Okounkov bodies coincide with the Feigin--Fourier--Littelmann--Vinberg polytopes in type A.
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural algebraic wall-crossing map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an Appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the combinatorial mutations studied by Akhtar-Coates-Galkin-Kasprzyk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا