ﻻ يوجد ملخص باللغة العربية
We give scheme-theoretic descriptions of the category of fibre functors on the categories of sheaves associated to the Zariski, Nisnevich, etale, rh, cdh, ldh, eh, qfh, and h topologies on the category of separated schemes of finite type over a separated noetherian base. Combined with a theorem of Deligne on the existence of enough points, this provides an algebro-geometric description of a conservative family of fibre functors on these categories of sheaves. As an example of an application we show direct image along a closed immersion is exact for all these topologies except qfh. The methods are transportable to other categories of sheaves as well.
This is an expanded version of the two papers Interpolation of Varieties of Minimal Degree and Interpolation Problems: Del Pezzo Surfaces. It is well known that one can find a rational normal curve in $mathbb P^n$ through $n+3$ general points. More r
We develop the framework for augmented homotopical algebraic geometry. This is an extension of homotopical algebraic geometry, which itself is a homotopification of classical algebraic geometry. To do so, we define the notion of augmentation categori
We here present rudiments of an approach to geometric actions in noncommutative algebraic geometry, based on geometrically admissible actions of monoidal categories. This generalizes the usual (co)module algebras over Hopf algebras which provide affi
We introduce and describe the $2$-category $mathsf{Grt}_{flat}$ of Grothendieck categories and flat morphisms between them. First, we show that the tensor product of locally presentable linear categories $boxtimes$ restricts nicely to $mathsf{Grt}_{f
We develop a collection of numerical algorithms which connect ideas from polyhedral geometry and algebraic geometry. The first algorithm we develop functions as a numerical oracle for the Newton polytope of a hypersurface and is based on ideas of Hau