ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical methods to treat a single dissipative bosonic mode coupled globally to an interacting many body system

121   0   0.0 ( 0 )
 نشر من قبل Catalin-Mihai Halati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two approaches capable of describing the dynamics of an interacting many body system on a lattice coupled globally to a dissipative bosonic mode. Physical realizations are for example ultracold atom gases in optical lattice coupled to a photonic mode of an optical cavity or electronic gases in solids coupled to THz cavity fields. The first approach, applicable for large dissipation strengths and any system size, is a variant of the many-body adiabatic elimination method for investigating the long time dynamics of the system. The second method extends the time-dependent matrix product techniques to capture the global coupling of the interacting particles to the bosonic mode and its open nature. It gives numerically exact results for small to intermediate system sizes. As a benchmark for our methods we perform the full quantum evolution of a Bose-Hubbard chain coupled to a cavity mode. We show that important deviations from the mean-field behavior occur when considering the full atoms cavity coupling [1].

قيم البحث

اقرأ أيضاً

We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-ins ulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasi-particle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.
In dissipative quantum systems, strong symmetries can lead to the existence of conservation laws and multiple steady states. The investigation of such strong symmetries and their consequences on the dynamics of the dissipative systems is still in its infancy. In this work we investigate a strong symmetry for bosonic atoms coupled to an optical cavity, an experimentally relevant system, using adiabatic elimination techniques and numerically exact matrix product state methods. We show the existence of multiple steady states for ideal bosons coupled to the cavity. We find that the introduction of a weak breaking of the strong symmetry by a small interaction term leads to a direct transition from multiple steady states to a unique steady state. We point out the phenomenon of dissipative freezing, the breaking of the conservation law at the level of individual realizations in the presence of the strong symmetry. For a weak breaking of the strong symmetry we see that the behavior of the individual trajectories still shows some signs of this dissipative freezing before it fades out for a larger symmetry breaking terms.
Decoherence is ubiquitous in quantum physics, from the conceptual foundations to quantum information processing or quantum technologies, where it is a threat that must be countered. While decoherence has been extensively studied for simple, well-isol ated systems such as single atoms or ions, much less is known for many-body systems where inter-particle correlations and interactions can drastically alter the dissipative dynamics. Here we report an experimental study of how spontaneous emission destroys the spatial coherence of a gas of strongly interacting bosons in an optical lattice. Instead of the standard momentum diffusion expected for independent atoms, we observe an anomalous sub-diffusive expansion, associated with a universal slowing down $propto 1/t^{1/2}$ of the decoherence dynamics. This algebraic decay reflects the emergence of slowly-relaxing many-body states, akin to sub-radiant states of many excited emitters. These results, supported by theoretical predictions, provide an important benchmark in the understanding of open many-body systems.
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase diagram for different choices of higher order local interactions. Considering the most general Bose-Hubbard model involving local multi-body interactions we investigate the ground state properties utilizing the cluster mean-field theory approach and further confirm the results by means of sophisticated infinite Projected Entangled Pair States calculations. By using various order parameters, we show that the choice of higher-order interaction can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of temperature and density-dependent tunneling to establish the stability of the PSF phase.
We experimentally demonstrate how thermal properties in an non-equilibrium quantum many- body system emerge locally, spread in space and time, and finally lead to the globally relaxed state. In our experiment, we quench a one-dimensional (1D) Bose ga s by coherently splitting it into two parts. By monitoring the phase coherence between the two parts we observe that the thermal correlations of a prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. Our results underline the close link between the propagation of correlations and relaxation processes in quantum many-body systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا