ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous momentum diffusion in a dissipative many-body system

113   0   0.0 ( 0 )
 نشر من قبل Fabrice Gerbier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Decoherence is ubiquitous in quantum physics, from the conceptual foundations to quantum information processing or quantum technologies, where it is a threat that must be countered. While decoherence has been extensively studied for simple, well-isolated systems such as single atoms or ions, much less is known for many-body systems where inter-particle correlations and interactions can drastically alter the dissipative dynamics. Here we report an experimental study of how spontaneous emission destroys the spatial coherence of a gas of strongly interacting bosons in an optical lattice. Instead of the standard momentum diffusion expected for independent atoms, we observe an anomalous sub-diffusive expansion, associated with a universal slowing down $propto 1/t^{1/2}$ of the decoherence dynamics. This algebraic decay reflects the emergence of slowly-relaxing many-body states, akin to sub-radiant states of many excited emitters. These results, supported by theoretical predictions, provide an important benchmark in the understanding of open many-body systems.



قيم البحث

اقرأ أيضاً

The open dynamics of quantum many-body systems involve not only the exchange of energy, but also of other conserved quantities, such as momentum. This leads to additional decoherence, which may have a profound impact in the dynamics. Motivated by thi s, we consider a many-body system subject to total momentum dephasing and show that under very general conditions this leads to a diffusive component in the dynamics of any local density, even far from equilibrium. Such component will usually have an intricate interplay with the unitary dynamics. To illustrate this, we consider the case of a superfluid and show that momentum dephasing introduces a damping in the sound-wave dispersion relation, similar to that predicted by the Navier-Stokes equation for ordinary fluids. Finally, we also study the effects of dephasing in linear response, and show that it leads to a universal additive contribution to the diffusion constant, which can be obtained from a Kubo formula.
We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-ins ulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasi-particle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.
We present two approaches capable of describing the dynamics of an interacting many body system on a lattice coupled globally to a dissipative bosonic mode. Physical realizations are for example ultracold atom gases in optical lattice coupled to a ph otonic mode of an optical cavity or electronic gases in solids coupled to THz cavity fields. The first approach, applicable for large dissipation strengths and any system size, is a variant of the many-body adiabatic elimination method for investigating the long time dynamics of the system. The second method extends the time-dependent matrix product techniques to capture the global coupling of the interacting particles to the bosonic mode and its open nature. It gives numerically exact results for small to intermediate system sizes. As a benchmark for our methods we perform the full quantum evolution of a Bose-Hubbard chain coupled to a cavity mode. We show that important deviations from the mean-field behavior occur when considering the full atoms cavity coupling [1].
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and eras e all signatures of MBL. This presents a challenge for experimental investigations of MBL, since no realistic system can ever be fully closed. In this work, we experimentally explore the thermalization dynamics of a localized system in the presence of controlled dissipation. Specifically, we find that photon scattering results in a stretched exponential decay of an initial density pattern with a rate that depends linearly on the scattering rate. We find that the resulting susceptibility increases significantly close to the phase transition point. In this regime, which is inaccessible to current numerical studies, we also find a strong dependence on interactions. Our work provides a basis for systematic studies of MBL in open systems and opens a route towards extrapolation of closed system properties from experiments.
Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics. We find evidence for accelerated transport into the localized region, signature of a quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-induced dynamics by evaluating multipoint correlations between the bath and the system. Our results have fundamental implications on the robustness of many-body--localized systems and their critical behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا