ﻻ يوجد ملخص باللغة العربية
Decoherence is ubiquitous in quantum physics, from the conceptual foundations to quantum information processing or quantum technologies, where it is a threat that must be countered. While decoherence has been extensively studied for simple, well-isolated systems such as single atoms or ions, much less is known for many-body systems where inter-particle correlations and interactions can drastically alter the dissipative dynamics. Here we report an experimental study of how spontaneous emission destroys the spatial coherence of a gas of strongly interacting bosons in an optical lattice. Instead of the standard momentum diffusion expected for independent atoms, we observe an anomalous sub-diffusive expansion, associated with a universal slowing down $propto 1/t^{1/2}$ of the decoherence dynamics. This algebraic decay reflects the emergence of slowly-relaxing many-body states, akin to sub-radiant states of many excited emitters. These results, supported by theoretical predictions, provide an important benchmark in the understanding of open many-body systems.
The open dynamics of quantum many-body systems involve not only the exchange of energy, but also of other conserved quantities, such as momentum. This leads to additional decoherence, which may have a profound impact in the dynamics. Motivated by thi
We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-ins
We present two approaches capable of describing the dynamics of an interacting many body system on a lattice coupled globally to a dissipative bosonic mode. Physical realizations are for example ultracold atom gases in optical lattice coupled to a ph
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and eras
Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum