ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate how thermal properties in an non-equilibrium quantum many- body system emerge locally, spread in space and time, and finally lead to the globally relaxed state. In our experiment, we quench a one-dimensional (1D) Bose gas by coherently splitting it into two parts. By monitoring the phase coherence between the two parts we observe that the thermal correlations of a prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. Our results underline the close link between the propagation of correlations and relaxation processes in quantum many-body systems.
Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiti
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
Quantum many-body systems exhibit diverse phases characterized by various types of correlations. One aspect of quantum correlations is whether a quantum phase is gapless or gapped, and there are already well-developed tools to probe these correlation
The phenomenon of many-body localised (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperat
We study the ground state properties and nonequilibrium dynamics of two spinor bosonic impurities immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For the ground state of two non-interacting impurities we re