ﻻ يوجد ملخص باللغة العربية
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase diagram for different choices of higher order local interactions. Considering the most general Bose-Hubbard model involving local multi-body interactions we investigate the ground state properties utilizing the cluster mean-field theory approach and further confirm the results by means of sophisticated infinite Projected Entangled Pair States calculations. By using various order parameters, we show that the choice of higher-order interaction can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of temperature and density-dependent tunneling to establish the stability of the PSF phase.
We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
The quantum evolution of a cloud of bosons initially localized on part of a one dimensional optical lattice and suddenly subjected to a linear ramp is studied, realizing a quantum analog of the Galileo ramp experiment. The main remarkable effects of
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,
We present a non-equilibrium Greens functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particula