ﻻ يوجد ملخص باللغة العربية
Generative deep learning algorithms have progressed to a point where it is difficult to tell the difference between what is real and what is fake. In 2018, it was discovered how easy it is to use this technology for unethical and malicious applications, such as the spread of misinformation, impersonation of political leaders, and the defamation of innocent individuals. Since then, these `deepfakes have advanced significantly. In this paper, we explore the creation and detection of deepfakes and provide an in-depth view of how these architectures work. The purpose of this survey is to provide the reader with a deeper understanding of (1) how deepfakes are created and detected, (2) the current trends and advancements in this domain, (3) the shortcomings of the current defense solutions, and (4) the areas which require further research and attention.
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed
The creation and the manipulation of facial appearance via deep generative approaches, known as DeepFake, have achieved significant progress and promoted a wide range of benign and malicious applications. The evil side of this new technique poses ano
Camera-equipped drones can capture targets on the ground from a wider field of view than static cameras or moving sensors over the ground. In this paper we present a large-scale vehicle detection and counting benchmark, named DroneVehicle, aiming at
Deepfakes is a branch of malicious techniques that transplant a target face to the original one in videos, resulting in serious problems such as infringement of copyright, confusion of information, or even public panic. Previous efforts for Deepfakes
The novelty and creativity of DeepFake generation techniques have attracted worldwide media attention. Many researchers focus on detecting fake images produced by these GAN-based image generation methods with fruitful results, indicating that the GAN