ﻻ يوجد ملخص باللغة العربية
Camera-equipped drones can capture targets on the ground from a wider field of view than static cameras or moving sensors over the ground. In this paper we present a large-scale vehicle detection and counting benchmark, named DroneVehicle, aiming at advancing visual analysis tasks on the drone platform. The images in the benchmark were captured over various urban areas, which include different types of urban roads, residential areas, parking lots, highways, etc., from day to night. Specifically, DroneVehicle consists of 15,532 pairs of images, i.e., RGB images and infrared images with rich annotations, including oriented object bounding boxes, object categories, etc. With intensive amount of effort, our benchmark has 441,642 annotated instances in 31,064 images. As a large-scale dataset with both RGB and thermal infrared (RGBT) images, the benchmark enables extensive evaluation and investigation of visual analysis algorithms on the drone platform. In particular, we design two popular tasks with the benchmark, including object detection and object counting. All these tasks are extremely challenging in the proposed dataset due to factors such as illumination, occlusion, and scale variations. We hope the benchmark largely boost the research and development in visual analysis on drone platforms. The DroneVehicle dataset can be download from https://github.com/VisDrone/DroneVehicle.
RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role to represent the target appearance in RGBT tracking. In this paper, we propose a novel challenge-aware neural netwo
Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the dr
With the development of presentation attacks, Automated Fingerprint Recognition Systems(AFRSs) are vulnerable to presentation attack. Thus, numerous methods of presentation attack detection(PAD) have been proposed to ensure the normal utilization of
Salient object detection in complex scenes and environments is a challenging research topic. Most works focus on RGB-based salient object detection, which limits its performance of real-life applications when confronted with adverse conditions such a
The first Agriculture-Vision Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images, especially for the semantic segmentation task associated with our challenge datase