ﻻ يوجد ملخص باللغة العربية
Deepfakes is a branch of malicious techniques that transplant a target face to the original one in videos, resulting in serious problems such as infringement of copyright, confusion of information, or even public panic. Previous efforts for Deepfakes videos detection mainly focused on appearance features, which have a risk of being bypassed by sophisticated manipulation, also resulting in high model complexity and sensitiveness to noise. Besides, how to mine the temporal features of manipulated videos and exploit them is still an open question. We propose an efficient and robust framework named LRNet for detecting Deepfakes videos through temporal modeling on precise geometric features. A novel calibration module is devised to enhance the precision of geometric features, making it more discriminative, and a two-stream Recurrent Neural Network (RNN) is constructed for sufficient exploitation of temporal features. Compared to previous methods, our proposed method is lighter-weighted and easier to train. Moreover, our method has shown robustness in detecting highly compressed or noise corrupted videos. Our model achieved 0.999 AUC on FaceForensics++ dataset. Meanwhile, it has a graceful decline in performance (-0.042 AUC) when faced with highly compressed videos.
Generative deep learning algorithms have progressed to a point where it is difficult to tell the difference between what is real and what is fake. In 2018, it was discovered how easy it is to use this technology for unethical and malicious applicatio
Image quality plays a big role in CNN-based image classification performance. Fine-tuning the network with distorted samples may be too costly for large networks. To solve this issue, we propose a transfer learning approach optimized to keep into acc
In real-world Bayesian inference applications, prior assumptions regarding the parameters of interest may be unrepresentative of their actual values for a given dataset. In particular, if the likelihood is concentrated far out in the wings of the ass
Extensive research in neural style transfer methods has shown that the correlation between features extracted by a pre-trained VGG network has a remarkable ability to capture the visual style of an image. Surprisingly, however, this stylization quali
Ensemble-based adversarial training is a principled approach to achieve robustness against adversarial attacks. An important technique of this approach is to control the transferability of adversarial examples among ensemble members. We propose in th