ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge-Driven Distractor Generation for Cloze-style Multiple Choice Questions

138   0   0.0 ( 0 )
 نشر من قبل Siyu Ren
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel configurable framework to automatically generate distractive choices for open-domain cloze-style multiple-choice questions, which incorporates a general-purpose knowledge base to effectively create a small distractor candidate set, and a feature-rich learning-to-rank model to select distractors that are both plausible and reliable. Experimental results on datasets across four domains show that our framework yields distractors that are more plausible and reliable than previous methods. This dataset can also be used as a benchmark for distractor generation in the future.



قيم البحث

اقرأ أيضاً

We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
We present a novel approach to answer the Chinese elementary school Social Study Multiple Choice questions. Although BERT has demonstrated excellent performance on Reading Comprehension tasks, it is found not good at handling some specific types of q uestions, such as Negation, All-of-the-above, and None-of-the-above. We thus propose a novel framework to cascade BERT with a Pre-Processor and an Answer-Selector modules to tackle the above challenges. Experimental results show the proposed approach effectively improves the performance of BERT, and thus demonstrate the feasibility of supplementing BERT with additional modules.
118 - Daya Guo , Akari Asai , Duyu Tang 2020
We study the problem of generating inferential texts of events for a variety of commonsense like textit{if-else} relations. Existing approaches typically use limited evidence from training examples and learn for each relation individually. In this wo rk, we use multiple knowledge sources as fuels for the model. Existing commonsense knowledge bases like ConceptNet are dominated by taxonomic knowledge (e.g., textit{isA} and textit{relatedTo} relations), having a limited number of inferential knowledge. We use not only structured commonsense knowledge bases, but also natural language snippets from search-engine results. These sources are incorporated into a generative base model via key-value memory network. In addition, we introduce a meta-learning based multi-task learning algorithm. For each targeted commonsense relation, we regard the learning of examples from other relations as the meta-training process, and the evaluation on examples from the targeted relation as the meta-test process. We conduct experiments on Event2Mind and ATOMIC datasets. Results show that both the integration of multiple knowledge sources and the use of the meta-learning algorithm improve the performance.
Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an on going research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.
76 - Liang Wang , Sujian Li , Wei Zhao 2018
Cloze-style reading comprehension has been a popular task for measuring the progress of natural language understanding in recent years. In this paper, we design a novel multi-perspective framework, which can be seen as the joint training of heterogen eous experts and aggregate context information from different perspectives. Each perspective is modeled by a simple aggregation module. The outputs of multiple aggregation modules are fed into a one-timestep pointer network to get the final answer. At the same time, to tackle the problem of insufficient labeled data, we propose an efficient sampling mechanism to automatically generate more training examples by matching the distribution of candidates between labeled and unlabeled data. We conduct our experiments on a recently released cloze-test dataset CLOTH (Xie et al., 2017), which consists of nearly 100k questions designed by professional teachers. Results show that our method achieves new state-of-the-art performance over previous strong baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا