ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Perspective Context Aggregation for Semi-supervised Cloze-style Reading Comprehension

77   0   0.0 ( 0 )
 نشر من قبل Liang Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cloze-style reading comprehension has been a popular task for measuring the progress of natural language understanding in recent years. In this paper, we design a novel multi-perspective framework, which can be seen as the joint training of heterogeneous experts and aggregate context information from different perspectives. Each perspective is modeled by a simple aggregation module. The outputs of multiple aggregation modules are fed into a one-timestep pointer network to get the final answer. At the same time, to tackle the problem of insufficient labeled data, we propose an efficient sampling mechanism to automatically generate more training examples by matching the distribution of candidates between labeled and unlabeled data. We conduct our experiments on a recently released cloze-test dataset CLOTH (Xie et al., 2017), which consists of nearly 100k questions designed by professional teachers. Results show that our method achieves new state-of-the-art performance over previous strong baselines.

قيم البحث

اقرأ أيضاً

This study tackles generative reading comprehension (RC), which consists of answering questions based on textual evidence and natural language generation (NLG). We propose a multi-style abstractive summarization model for question answering, called M asque. The proposed model has two key characteristics. First, unlike most studies on RC that have focused on extracting an answer span from the provided passages, our model instead focuses on generating a summary from the question and multiple passages. This serves to cover various answer styles required for real-world applications. Second, whereas previous studies built a specific model for each answer style because of the difficulty of acquiring one general model, our approach learns multi-style answers within a model to improve the NLG capability for all styles involved. This also enables our model to give an answer in the target style. Experiments show that our model achieves state-of-the-art performance on the Q&A task and the Q&A + NLG task of MS MARCO 2.1 and the summary task of NarrativeQA. We observe that the transfer of the style-independent NLG capability to the target style is the key to its success.
Commonsense Reading Comprehension (CRC) is a significantly challenging task, aiming at choosing the right answer for the question referring to a narrative passage, which may require commonsense knowledge inference. Most of the existing approaches onl y fuse the interaction information of choice, passage, and question in a simple combination manner from a emph{union} perspective, which lacks the comparison information on a deeper level. Instead, we propose a Multi-Perspective Fusion Network (MPFN), extending the single fusion method with multiple perspectives by introducing the emph{difference} and emph{similarity} fusiondeleted{along with the emph{union}}. More comprehensive and accurate information can be captured through the three types of fusion. We design several groups of experiments on MCScript dataset cite{Ostermann:LREC18:MCScript} to evaluate the effectiveness of the three types of fusion respectively. From the experimental results, we can conclude that the difference fusion is comparable with union fusion, and the similarity fusion needs to be activated by the union fusion. The experimental result also shows that our MPFN model achieves the state-of-the-art with an accuracy of 83.52% on the official test set.
In this paper, we present a new verification style reading comprehension dataset named VGaokao from Chinese Language tests of Gaokao. Different from existing efforts, the new dataset is originally designed for native speakers evaluation, thus requiri ng more advanced language understanding skills. To address the challenges in VGaokao, we propose a novel Extract-Integrate-Compete approach, which iteratively selects complementary evidence with a novel query updating mechanism and adaptively distills supportive evidence, followed by a pairwise competition to push models to learn the subtle difference among similar text pieces. Experiments show that our methods outperform various baselines on VGaokao with retrieved complementary evidence, while having the merits of efficiency and explainability. Our dataset and code are released for further research.
Procedural texts often describe processes (e.g., photosynthesis and cooking) that happen over entities (e.g., light, food). In this paper, we introduce an algorithm for procedural reading comprehension by translating the text into a general formalism that represents processes as a sequence of transitions over entity attributes (e.g., location, temperature). Leveraging pre-trained language models, our model obtains entity-aware and attribute-aware representations of the text by joint prediction of entity attributes and their transitions. Our model dynamically obtains contextual encodings of the procedural text exploiting information that is encoded about previous and current states to predict the transition of a certain attribute which can be identified as a span of text or from a pre-defined set of classes. Moreover, our model achieves state of the art results on two procedural reading comprehension datasets, namely ProPara and npn-cooking
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for suc h type of MRC may result in unsatisfactory performance when the ground-truth answers are given by human annotators or highly re-paraphrased from parts of the passages. On the other hand, using generative decoder cannot well guarantee the resulted answers with well-formed syntax and semantics when encountering long sentences. Therefore, to alleviate the obvious drawbacks of both sides, we propose an answer making-up method from extracted multi-spans that are learned by our model as highly confident $n$-gram candidates in the given passage. That is, the returned answers are composed of discontinuous multi-spans but not just one consecutive span in the given passages anymore. The proposed method is simple but effective: empirical experiments on MS MARCO show that the proposed method has a better performance on accurately generating long answers, and substantially outperforms two competitive typical one-span and Seq2Seq baseline decoders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا