ترغب بنشر مسار تعليمي؟ اضغط هنا

Answering Chinese Elementary School Social Study Multiple Choice Questions

143   0   0.0 ( 0 )
 نشر من قبل Chao-Chun Liang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel approach to answer the Chinese elementary school Social Study Multiple Choice questions. Although BERT has demonstrated excellent performance on Reading Comprehension tasks, it is found not good at handling some specific types of questions, such as Negation, All-of-the-above, and None-of-the-above. We thus propose a novel framework to cascade BERT with a Pre-Processor and an Answer-Selector modules to tackle the above challenges. Experimental results show the proposed approach effectively improves the performance of BERT, and thus demonstrate the feasibility of supplementing BERT with additional modules.



قيم البحث

اقرأ أيضاً

We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
137 - Siyu Ren , Kenny Q. Zhu 2020
In this paper, we propose a novel configurable framework to automatically generate distractive choices for open-domain cloze-style multiple-choice questions, which incorporates a general-purpose knowledge base to effectively create a small distractor candidate set, and a feature-rich learning-to-rank model to select distractors that are both plausible and reliable. Experimental results on datasets across four domains show that our framework yields distractors that are more plausible and reliable than previous methods. This dataset can also be used as a benchmark for distractor generation in the future.
Motivated by recent failures of polling to estimate populist party support, we propose and analyse two methods for asking sensitive multiple choice questions where the respondent retains some privacy and therefore might answer more truthfully. The fi rst method consists of asking for the true choice along with a choice picked at random. The other method presents a list of choices and asks whether the preferred one is on the list or not. Different respondents are shown different lists. The methods are easy to explain, which makes it likely that the respondent understands how her privacy is protected and may thus entice her to participate in the survey and answer truthfully. The methods are also easy to implement and scale up.
Ambiguity is inherent to open-domain question answering; especially when exploring new topics, it can be difficult to ask questions that have a single, unambiguous answer. In this paper, we introduce AmbigQA, a new open-domain question answering task which involves finding every plausible answer, and then rewriting the question for each one to resolve the ambiguity. To study this task, we construct AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous, with diverse sources of ambiguity such as event and entity references. We also present strong baseline models for AmbigQA which we show benefit from weakly supervised learning that incorporates NQ-open, strongly suggesting our new task and data will support significant future research effort. Our data and baselines are available at https://nlp.cs.washington.edu/ambigqa.
136 - Xinya Du , Claire Cardie 2020
The problem of event extraction requires detecting the event trigger and extracting its corresponding arguments. Existing work in event argument extraction typically relies heavily on entity recognition as a preprocessing/concurrent step, causing the well-known problem of error propagation. To avoid this issue, we introduce a new paradigm for event extraction by formulating it as a question answering (QA) task that extracts the event arguments in an end-to-end manner. Empirical results demonstrate that our framework outperforms prior methods substantially; in addition, it is capable of extracting event arguments for roles not seen at training time (zero-shot learning setting).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا