ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband Electrical Action Sensing Techniques with conducting wires for low-mass dark matter axion detection

63   0   0.0 ( 0 )
 نشر من قبل Michael Edmund Tobar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the inverse Primakoff effect it has been shown that when axions interact with a DC magnetic B-field the resulting electrical action will produce an AC electromotive force which oscillates at the Compton frequency of the axion, and may be modeled as an oscillating effective impressed magnetic current boundary source. We use this result to calculate the sensitivity of new experiments to low-mass axions using the quasi-static technique. First, we calculate the current induced in an electric dipole antenna (straight conducting wire) when the DC B-field is spatially constant and show that it has a sensitivity proportional to the axion mass. Following this we extend the topology by making use of the full extent of the spatially varying DC B-field. This extension is achieved by transforming the 1D conducting wire to a 2D winding, to fully link the effective magnetic current boundary source and thus couple to the full axion induced electrical action. In this case the conductor becomes a coil winding where the voltage induced across the winding increases proportionally to the number of windings. We investigate two different topologies: The 1st uses a single winding, and couples to the effective short circuit current generated in the winding, which is read out using a sensitive low impedance SQUID amplifier: The 2nd uses multiple windings, with every turn effectively increasing the the voltage output proportional to the winding number. The read out of this configuration is optimised by implementing a cryogenic low-noise high input impedance voltage amplifier. The end result is a new Broadband Electrical Action Sensing Techniques with orders of magnitude improved sensitivity, which is linearly proportional to the axion photon coupling and capable of detecting QCD dark matter axions.



قيم البحث

اقرأ أيضاً

We propose a new broadband search strategy for ultralight axion dark matter that interacts with electromagnetism. An oscillating axion field induces transitions between two quasi-degenerate resonant modes of a superconducting cavity. In two broadband runs optimized for high and low masses, this setup can probe unexplored parameter space for axion-like particles covering fifteen orders of magnitude in mass, including astrophysically long-ranged fuzzy dark matter.
In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has imp roved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.
The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact g ermanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.
Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing t he rotational oscillation in a bow-tie ring cavity. The signal to noise ratio of DANCE can be improved by long-term observation, and we are planning a year-long observation for the final DANCE. In this document, I will report on the control systems of the ring cavity we developed for the future long-term observation.
We present the technical design for the SuperCDMS high-voltage, low-mass dark matter detectors, designed to be sensitive to dark matter down to 300 MeV/$c^2$ in mass and resolve individual electron-hole pairs from low-energy scattering events in high -purity Ge and Si crystals. In this paper we discuss some of the studies and technological improvements which have allowed us to design such a sensitive detector, including advances in phonon sensor design and detector simulation. With this design we expect to achieve better than 10 eV (5 eV) phonon energy resolution in our Ge (Si) detectors, and recoil energy resolution below 1eV by exploiting Luke-Neganov phonon generation of charges accelerated in high fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا