ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter direct-detection experiments

88   0   0.0 ( 0 )
 نشر من قبل Teresa Marrodan Undagoitia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.



قيم البحث

اقرأ أيضاً

278 - E. Daw , A. Dorofeev , J.R. Fox 2011
The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Pl anned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the worlds first 10 m3-scale directional Dark Matter detector.
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress rad ioactive backgrounds, having an unrivaled sensitivity to WIMPs with masses $<$6 GeV/$c^2$. Early results motivated the construction of a 100 g detector, DAMIC100, currently being installed at SNOLAB. This contribution discusses the installation progress, new calibration efforts near the threshold, a preliminary result with 2014 data, and the prospects for physics results after one year of data taking.
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are present ed for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.
We present the results of measurements demonstrating the efficiency of the EDELWEISS-III array of cryogenic germanium detectors for direct dark matter searches. The experimental setup and the FID (Fully Inter-Digitized) detector array is described, a s well as the efficiency of the double measurement of heat and ionization signals in background rejection. For the whole set of 24 FID detectors used for coincidence studies, the baseline resolutions for the fiducial ionization energy are mainly below 0.7 keV$_{ee}$ (FHWM) whereas the baseline resolutions for heat energies are mainly below 1.5 keV$_{ee}$ (FWHM). The response to nuclear recoils as well as the very good discrimination capability of the FID design has been measured with an AmBe source. The surface $beta$- and $alpha$-decay rejection power of $R_{rm surf} < 4 times 10^{-5}$ per $alpha$ at 90% C.L. has been determined with a $^{210}$Pb source, the rejection of bulk $gamma$-ray events has been demonstrated using $gamma$-calibrations with $^{133}$Ba sources leading to a value of $R_{gamma{rm -mis-fid}} < 2.5 times 10^{-6}$ at 90% C.L.. The current levels of natural radioactivity measured in the detector array are shown as the rate of single $gamma$ background. The fiducial volume fraction of the FID detectors has been measured to a weighted average value of $(74.6 pm 0.4)%$ using the cosmogenic activation of the $^{65}$Zn and $^{68,71}$Ge isotopes. The stability and uniformity of the detector response is also discussed. The achieved resolutions, thresholds and background levels of the upgraded EDELWEISS-III detectors in their setup are thus well suited to the direct search of WIMP dark matter over a large mass range.
Liquid Argon Time Projection Chambers are planned to comprise a central role in the future of the U.S. High Energy Physics neutrino program. In particular, this detector technology will form the basis for the 40 kton Deep Underground Neutrino Experim ent (DUNE). In this paper we take as a starting point the dual phase far detector design proposed by the DUNE experiment and ask what changes are necessary to allow one of the four 10 kt modules to be sensitive to heavy Weakly Interacting Massive Particle (WIMP) dark matter. We show that with control over backgrounds and the use of low radioactivity argon, which may be commercially available on that timescale, along with a significant increase in light detection, one DUNE-like module gives a competitive WIMP detection sensitivity, particularly above a dark matter mass of 100 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا